Early Diagnosis of Accelerated Aging for Lithium-Ion Batteries With an Integrated Framework of Aging Mechanisms and Data-Driven Methods

锂(药物) 加速老化 计算机科学 离子 可靠性工程 材料科学 心理学 化学 工程类 精神科 有机化学
作者
Xinyu Jia,Caiping Zhang,Le Yi Wang,Linjing Zhang,Xingzhen Zhou
出处
期刊:IEEE Transactions on Transportation Electrification 卷期号:8 (4): 4722-4742 被引量:15
标识
DOI:10.1109/tte.2022.3180805
摘要

Accelerated aging is a significant issue for various lithium-ion battery applications, such as electric vehicles, energy storage, and electronic devices. Effective early diagnosis is prominent to restrict battery failure. Typical battery classification data-driven methods are structured to capture features from data without considering the underlying aging mechanism. On the other hand, analysis of the detailed aging mechanism that can generate electrochemistry-based models can be highly complicated and may not be suitable for real-time battery management. In this article, the accelerated aging diagnosis method is systematically investigated. The accelerated aging mechanisms of the Li[NiCoMn]O2 (NCM) battery are analyzed by the nondestructive quantitative diagnostic method. We prove the feasibility of accelerated aging diagnosis based on the accelerated aging mechanism analysis. An integrated framework of aging mechanisms and data-driven methods (IFAMDM) is introduced for lithium-ion battery-accelerated aging diagnosis. Highly adaptable features reflecting the accelerated aging mechanism are proposed for lithium-ion battery-accelerated aging. Then, we propose a combination method to diagnose battery-accelerated aging. The IFAMDM was verified on two types of battery datasets. The IFAMDM is proved to be highly generic and accurate for lithium-ion battery-accelerated aging diagnosis at the 100th cycle.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
LiuChuannan完成签到,获得积分10
1秒前
斯文可仁完成签到,获得积分10
2秒前
冷面完成签到,获得积分10
2秒前
KK完成签到,获得积分10
2秒前
羊洋洋发布了新的文献求助10
2秒前
TIGun发布了新的文献求助10
3秒前
inwxy发布了新的文献求助10
3秒前
yzq完成签到 ,获得积分10
4秒前
oceandad发布了新的文献求助10
4秒前
4秒前
KK完成签到,获得积分10
5秒前
5秒前
善学以致用应助洋葱采纳,获得10
5秒前
6秒前
7秒前
炙热雅琴发布了新的文献求助10
7秒前
DD日看一篇完成签到,获得积分10
8秒前
8秒前
qiaoqiao发布了新的文献求助10
9秒前
李健应助陪你长大采纳,获得10
9秒前
9秒前
9秒前
隐形曼青应助冷冷采纳,获得10
10秒前
CHL5722发布了新的文献求助10
11秒前
11秒前
上官若男应助DD日看一篇采纳,获得10
11秒前
一半醒_完成签到 ,获得积分10
12秒前
安静达完成签到,获得积分10
12秒前
carol完成签到,获得积分10
12秒前
13秒前
14秒前
orixero应助华卷式采纳,获得10
14秒前
草莓芝士发布了新的文献求助10
15秒前
basil发布了新的文献求助10
15秒前
16秒前
科研通AI2S应助qiaoqiao采纳,获得10
16秒前
慕青应助qiaoqiao采纳,获得10
16秒前
17秒前
洋葱发布了新的文献求助10
18秒前
高分求助中
Medicina di laboratorio. Logica e patologia clinica 600
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
Women in Power in Post-Communist Parliaments 450
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3217251
求助须知:如何正确求助?哪些是违规求助? 2866489
关于积分的说明 8151913
捐赠科研通 2533143
什么是DOI,文献DOI怎么找? 1366092
科研通“疑难数据库(出版商)”最低求助积分说明 644672
邀请新用户注册赠送积分活动 617642