Early Diagnosis of Accelerated Aging for Lithium-Ion Batteries With an Integrated Framework of Aging Mechanisms and Data-Driven Methods

电池(电) 锂离子电池 锂(药物) 加速老化 机制(生物学) 计算机科学 可靠性工程 医学 工程类 功率(物理) 量子力学 认识论 物理 内分泌学 哲学
作者
Xinyu Jia,Caiping Zhang,Le Yi Wang,Linjing Zhang,Xingzhen Zhou
出处
期刊:IEEE Transactions on Transportation Electrification 卷期号:8 (4): 4722-4742 被引量:39
标识
DOI:10.1109/tte.2022.3180805
摘要

Accelerated aging is a significant issue for various lithium-ion battery applications, such as electric vehicles, energy storage, and electronic devices. Effective early diagnosis is prominent to restrict battery failure. Typical battery classification data-driven methods are structured to capture features from data without considering the underlying aging mechanism. On the other hand, analysis of the detailed aging mechanism that can generate electrochemistry-based models can be highly complicated and may not be suitable for real-time battery management. In this article, the accelerated aging diagnosis method is systematically investigated. The accelerated aging mechanisms of the Li[NiCoMn]O2 (NCM) battery are analyzed by the nondestructive quantitative diagnostic method. We prove the feasibility of accelerated aging diagnosis based on the accelerated aging mechanism analysis. An integrated framework of aging mechanisms and data-driven methods (IFAMDM) is introduced for lithium-ion battery-accelerated aging diagnosis. Highly adaptable features reflecting the accelerated aging mechanism are proposed for lithium-ion battery-accelerated aging. Then, we propose a combination method to diagnose battery-accelerated aging. The IFAMDM was verified on two types of battery datasets. The IFAMDM is proved to be highly generic and accurate for lithium-ion battery-accelerated aging diagnosis at the 100th cycle.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
无限思真发布了新的文献求助10
1秒前
wenwen完成签到,获得积分20
1秒前
赘婿应助一一采纳,获得10
2秒前
2秒前
kk发布了新的文献求助10
2秒前
2秒前
充电宝应助刻苦友安采纳,获得20
4秒前
小哀完成签到,获得积分10
4秒前
4秒前
4秒前
情怀应助2421154880采纳,获得10
4秒前
岳维芸发布了新的文献求助10
5秒前
5秒前
5秒前
d叨叨鱼发布了新的文献求助10
5秒前
ycxlb发布了新的文献求助10
5秒前
Lin发布了新的文献求助10
6秒前
zhang完成签到,获得积分10
7秒前
影影发布了新的文献求助10
8秒前
slow发布了新的文献求助10
8秒前
灿灿呀完成签到,获得积分20
9秒前
9秒前
圣晟胜完成签到,获得积分10
9秒前
张伯伦发布了新的文献求助10
9秒前
苏莉完成签到,获得积分10
9秒前
LarryC完成签到,获得积分10
10秒前
10秒前
jlw完成签到,获得积分10
10秒前
10秒前
11秒前
Lucas应助ZYYYY采纳,获得10
11秒前
星期八完成签到,获得积分10
11秒前
贾不努力发布了新的文献求助10
12秒前
学术智子完成签到,获得积分10
12秒前
浮游应助小魏采纳,获得10
12秒前
12秒前
涛涛完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
13秒前
YN3585发布了新的文献求助10
14秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695131
求助须知:如何正确求助?哪些是违规求助? 5100385
关于积分的说明 15215391
捐赠科研通 4851561
什么是DOI,文献DOI怎么找? 2602454
邀请新用户注册赠送积分活动 1554227
关于科研通互助平台的介绍 1512186