Early Diagnosis of Accelerated Aging for Lithium-Ion Batteries With an Integrated Framework of Aging Mechanisms and Data-Driven Methods

电池(电) 锂离子电池 锂(药物) 加速老化 机制(生物学) 计算机科学 可靠性工程 医学 工程类 功率(物理) 量子力学 认识论 物理 内分泌学 哲学
作者
Xinyu Jia,Caiping Zhang,Le Yi Wang,Linjing Zhang,Xingzhen Zhou
出处
期刊:IEEE Transactions on Transportation Electrification 卷期号:8 (4): 4722-4742 被引量:39
标识
DOI:10.1109/tte.2022.3180805
摘要

Accelerated aging is a significant issue for various lithium-ion battery applications, such as electric vehicles, energy storage, and electronic devices. Effective early diagnosis is prominent to restrict battery failure. Typical battery classification data-driven methods are structured to capture features from data without considering the underlying aging mechanism. On the other hand, analysis of the detailed aging mechanism that can generate electrochemistry-based models can be highly complicated and may not be suitable for real-time battery management. In this article, the accelerated aging diagnosis method is systematically investigated. The accelerated aging mechanisms of the Li[NiCoMn]O2 (NCM) battery are analyzed by the nondestructive quantitative diagnostic method. We prove the feasibility of accelerated aging diagnosis based on the accelerated aging mechanism analysis. An integrated framework of aging mechanisms and data-driven methods (IFAMDM) is introduced for lithium-ion battery-accelerated aging diagnosis. Highly adaptable features reflecting the accelerated aging mechanism are proposed for lithium-ion battery-accelerated aging. Then, we propose a combination method to diagnose battery-accelerated aging. The IFAMDM was verified on two types of battery datasets. The IFAMDM is proved to be highly generic and accurate for lithium-ion battery-accelerated aging diagnosis at the 100th cycle.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助科研通管家采纳,获得10
刚刚
大力帽子应助科研通管家采纳,获得10
刚刚
今后应助科研通管家采纳,获得10
刚刚
天空发布了新的文献求助10
刚刚
FashionBoy应助科研通管家采纳,获得10
刚刚
桐桐应助科研通管家采纳,获得10
刚刚
彭于彦祖应助科研通管家采纳,获得30
刚刚
李健应助科研通管家采纳,获得10
刚刚
研友_VZG7GZ应助科研通管家采纳,获得10
刚刚
打打应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
浮游应助科研通管家采纳,获得10
1秒前
隐形曼青应助科研通管家采纳,获得10
1秒前
HOAN应助科研通管家采纳,获得10
1秒前
Jasper应助科研通管家采纳,获得10
1秒前
Ava应助科研通管家采纳,获得10
1秒前
wanci应助科研通管家采纳,获得10
1秒前
大力帽子应助科研通管家采纳,获得10
1秒前
大力帽子应助科研通管家采纳,获得10
1秒前
田様应助科研通管家采纳,获得10
1秒前
大模型应助科研通管家采纳,获得10
1秒前
顾矜应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
大角牛完成签到,获得积分10
1秒前
星辰大海应助科研通管家采纳,获得10
1秒前
1秒前
彭于彦祖应助科研通管家采纳,获得150
1秒前
NexusExplorer应助科研通管家采纳,获得10
1秒前
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
1111111111发布了新的文献求助10
1秒前
斯文败类应助科研通管家采纳,获得10
2秒前
2秒前
酷波er应助chenshinkirou采纳,获得10
2秒前
2秒前
2秒前
2秒前
CipherSage应助123采纳,获得10
2秒前
2秒前
风雨无阻发布了新的文献求助10
2秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5711035
求助须知:如何正确求助?哪些是违规求助? 5202070
关于积分的说明 15263091
捐赠科研通 4863454
什么是DOI,文献DOI怎么找? 2610771
邀请新用户注册赠送积分活动 1561017
关于科研通互助平台的介绍 1518534