Early Diagnosis of Accelerated Aging for Lithium-Ion Batteries With an Integrated Framework of Aging Mechanisms and Data-Driven Methods

电池(电) 锂离子电池 锂(药物) 加速老化 机制(生物学) 计算机科学 可靠性工程 医学 工程类 功率(物理) 量子力学 认识论 物理 内分泌学 哲学
作者
Xinyu Jia,Caiping Zhang,Le Yi Wang,Linjing Zhang,Xingzhen Zhou
出处
期刊:IEEE Transactions on Transportation Electrification 卷期号:8 (4): 4722-4742 被引量:39
标识
DOI:10.1109/tte.2022.3180805
摘要

Accelerated aging is a significant issue for various lithium-ion battery applications, such as electric vehicles, energy storage, and electronic devices. Effective early diagnosis is prominent to restrict battery failure. Typical battery classification data-driven methods are structured to capture features from data without considering the underlying aging mechanism. On the other hand, analysis of the detailed aging mechanism that can generate electrochemistry-based models can be highly complicated and may not be suitable for real-time battery management. In this article, the accelerated aging diagnosis method is systematically investigated. The accelerated aging mechanisms of the Li[NiCoMn]O2 (NCM) battery are analyzed by the nondestructive quantitative diagnostic method. We prove the feasibility of accelerated aging diagnosis based on the accelerated aging mechanism analysis. An integrated framework of aging mechanisms and data-driven methods (IFAMDM) is introduced for lithium-ion battery-accelerated aging diagnosis. Highly adaptable features reflecting the accelerated aging mechanism are proposed for lithium-ion battery-accelerated aging. Then, we propose a combination method to diagnose battery-accelerated aging. The IFAMDM was verified on two types of battery datasets. The IFAMDM is proved to be highly generic and accurate for lithium-ion battery-accelerated aging diagnosis at the 100th cycle.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
guoym发布了新的文献求助10
刚刚
椰汁驳回了英姑应助
刚刚
刚刚
Lawenced完成签到,获得积分10
1秒前
1秒前
321完成签到,获得积分10
2秒前
2秒前
tong发布了新的文献求助30
2秒前
3秒前
Ruadong完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
Stone发布了新的文献求助10
4秒前
852应助33采纳,获得10
4秒前
Nobody完成签到,获得积分10
5秒前
DreamSeker8发布了新的文献求助10
6秒前
6秒前
6秒前
Owen_Hu_11完成签到,获得积分10
7秒前
小兵大大怪完成签到,获得积分10
7秒前
苦苦发布了新的文献求助10
7秒前
MANI完成签到,获得积分20
7秒前
Ruadong发布了新的文献求助10
8秒前
8秒前
爆米花应助盛夏采纳,获得10
8秒前
mmmmm发布了新的文献求助10
9秒前
Jerrie完成签到,获得积分10
9秒前
echo1993完成签到 ,获得积分10
9秒前
xue发布了新的文献求助10
9秒前
勤恳的曼凡完成签到 ,获得积分10
9秒前
9秒前
Hello应助Auoror采纳,获得10
9秒前
爱学习完成签到 ,获得积分10
9秒前
9秒前
妃子完成签到,获得积分10
10秒前
Celine完成签到,获得积分10
10秒前
烟花应助神光采纳,获得10
10秒前
kbj完成签到,获得积分10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608436
求助须知:如何正确求助?哪些是违规求助? 4693073
关于积分的说明 14876620
捐赠科研通 4717595
什么是DOI,文献DOI怎么找? 2544222
邀请新用户注册赠送积分活动 1509305
关于科研通互助平台的介绍 1472836