Early Diagnosis of Accelerated Aging for Lithium-Ion Batteries With an Integrated Framework of Aging Mechanisms and Data-Driven Methods

电池(电) 锂离子电池 锂(药物) 加速老化 机制(生物学) 计算机科学 可靠性工程 医学 工程类 功率(物理) 量子力学 认识论 物理 内分泌学 哲学
作者
Xinyu Jia,Caiping Zhang,Le Yi Wang,Linjing Zhang,Xingzhen Zhou
出处
期刊:IEEE Transactions on Transportation Electrification 卷期号:8 (4): 4722-4742 被引量:39
标识
DOI:10.1109/tte.2022.3180805
摘要

Accelerated aging is a significant issue for various lithium-ion battery applications, such as electric vehicles, energy storage, and electronic devices. Effective early diagnosis is prominent to restrict battery failure. Typical battery classification data-driven methods are structured to capture features from data without considering the underlying aging mechanism. On the other hand, analysis of the detailed aging mechanism that can generate electrochemistry-based models can be highly complicated and may not be suitable for real-time battery management. In this article, the accelerated aging diagnosis method is systematically investigated. The accelerated aging mechanisms of the Li[NiCoMn]O2 (NCM) battery are analyzed by the nondestructive quantitative diagnostic method. We prove the feasibility of accelerated aging diagnosis based on the accelerated aging mechanism analysis. An integrated framework of aging mechanisms and data-driven methods (IFAMDM) is introduced for lithium-ion battery-accelerated aging diagnosis. Highly adaptable features reflecting the accelerated aging mechanism are proposed for lithium-ion battery-accelerated aging. Then, we propose a combination method to diagnose battery-accelerated aging. The IFAMDM was verified on two types of battery datasets. The IFAMDM is proved to be highly generic and accurate for lithium-ion battery-accelerated aging diagnosis at the 100th cycle.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助Young采纳,获得10
刚刚
1秒前
忧虑的电话完成签到,获得积分10
2秒前
制冷剂完成签到 ,获得积分10
2秒前
周煜锦发布了新的文献求助10
2秒前
缥缈的寒烟完成签到,获得积分10
3秒前
顶顶小明完成签到,获得积分10
3秒前
李盛男发布了新的文献求助10
3秒前
charih完成签到 ,获得积分10
3秒前
田心完成签到,获得积分10
3秒前
浮游应助车轮滚滚采纳,获得10
3秒前
3秒前
3秒前
bingsu108完成签到,获得积分10
4秒前
4秒前
跳跃眼睛完成签到,获得积分20
4秒前
草拟大坝完成签到 ,获得积分0
4秒前
橘子完成签到 ,获得积分10
4秒前
濯枝雨完成签到,获得积分10
4秒前
完美的凡灵完成签到,获得积分10
4秒前
4秒前
Nicole完成签到 ,获得积分10
4秒前
孟寐以求发布了新的文献求助20
5秒前
脑洞疼应助俊逸的问兰采纳,获得10
6秒前
田様应助找不到采纳,获得10
6秒前
英俊的铭应助动听的铁身采纳,获得10
6秒前
852应助Zou采纳,获得10
6秒前
自觉语琴完成签到 ,获得积分10
6秒前
6秒前
6秒前
jjffyy完成签到 ,获得积分10
6秒前
孙嘉畯完成签到 ,获得积分10
7秒前
无奈冰蝶完成签到,获得积分10
7秒前
8秒前
是小高呀发布了新的文献求助10
8秒前
Akim应助共渡采纳,获得10
8秒前
情怀应助LCC采纳,获得10
8秒前
8秒前
票票完成签到,获得积分10
8秒前
Stella应助Akun采纳,获得20
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5574114
求助须知:如何正确求助?哪些是违规求助? 4660331
关于积分的说明 14729315
捐赠科研通 4600225
什么是DOI,文献DOI怎么找? 2524740
邀请新用户注册赠送积分活动 1495018
关于科研通互助平台的介绍 1465034