Early Diagnosis of Accelerated Aging for Lithium-Ion Batteries With an Integrated Framework of Aging Mechanisms and Data-Driven Methods

电池(电) 锂离子电池 锂(药物) 加速老化 机制(生物学) 计算机科学 可靠性工程 医学 工程类 功率(物理) 量子力学 认识论 物理 内分泌学 哲学
作者
Xinyu Jia,Caiping Zhang,Le Yi Wang,Linjing Zhang,Xingzhen Zhou
出处
期刊:IEEE Transactions on Transportation Electrification 卷期号:8 (4): 4722-4742 被引量:39
标识
DOI:10.1109/tte.2022.3180805
摘要

Accelerated aging is a significant issue for various lithium-ion battery applications, such as electric vehicles, energy storage, and electronic devices. Effective early diagnosis is prominent to restrict battery failure. Typical battery classification data-driven methods are structured to capture features from data without considering the underlying aging mechanism. On the other hand, analysis of the detailed aging mechanism that can generate electrochemistry-based models can be highly complicated and may not be suitable for real-time battery management. In this article, the accelerated aging diagnosis method is systematically investigated. The accelerated aging mechanisms of the Li[NiCoMn]O2 (NCM) battery are analyzed by the nondestructive quantitative diagnostic method. We prove the feasibility of accelerated aging diagnosis based on the accelerated aging mechanism analysis. An integrated framework of aging mechanisms and data-driven methods (IFAMDM) is introduced for lithium-ion battery-accelerated aging diagnosis. Highly adaptable features reflecting the accelerated aging mechanism are proposed for lithium-ion battery-accelerated aging. Then, we propose a combination method to diagnose battery-accelerated aging. The IFAMDM was verified on two types of battery datasets. The IFAMDM is proved to be highly generic and accurate for lithium-ion battery-accelerated aging diagnosis at the 100th cycle.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
远志发布了新的文献求助10
刚刚
脑洞疼应助Dreamable采纳,获得10
1秒前
1秒前
2秒前
2秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
吼吼应助科研通管家采纳,获得10
3秒前
桐桐应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
3秒前
深情安青应助科研通管家采纳,获得10
3秒前
吼吼应助科研通管家采纳,获得10
3秒前
寻道图强应助科研通管家采纳,获得50
3秒前
ding应助科研通管家采纳,获得10
3秒前
Verity应助科研通管家采纳,获得20
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
吼吼应助科研通管家采纳,获得10
3秒前
CipherSage应助科研通管家采纳,获得10
3秒前
情怀应助科研通管家采纳,获得10
4秒前
大模型应助科研通管家采纳,获得10
4秒前
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
隐形曼青应助科研通管家采纳,获得10
4秒前
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
4秒前
Junning应助科研通管家采纳,获得100
4秒前
w1kend发布了新的文献求助10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
蓝天应助科研通管家采纳,获得10
4秒前
所所应助科研通管家采纳,获得10
4秒前
ssuoi完成签到,获得积分10
4秒前
思源应助luo采纳,获得10
4秒前
佳雯发布了新的文献求助10
4秒前
slz发布了新的文献求助10
5秒前
十二码前的沉思完成签到,获得积分10
5秒前
7秒前
闫素肃发布了新的文献求助10
7秒前
Nofear发布了新的文献求助10
8秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5680124
求助须知:如何正确求助?哪些是违规求助? 4996372
关于积分的说明 15171821
捐赠科研通 4839954
什么是DOI,文献DOI怎么找? 2593739
邀请新用户注册赠送积分活动 1546730
关于科研通互助平台的介绍 1504779