Co-training Disentangled Domain Adaptation Network for Leveraging Popularity Bias in Recommenders

人气 计算机科学 财产(哲学) 透视图(图形) 人工智能 代表(政治) 嵌入 长尾 机器学习 适应(眼睛) 特征学习 数学 心理学 统计 社会心理学 政治 认识论 哲学 神经科学 法学 政治学
作者
Zhihong Chen,Jiawei Wu,Chenliang Li,Jingxu Chen,Rong Xiao,Binqiang Zhao
标识
DOI:10.1145/3477495.3531952
摘要

Recommender system usually faces popularity bias. From the popularity distribution shift perspective, the normal paradigm trained on exposed items (most are hot items) identifies that recommending popular items more frequently can achieve lower loss, thus injecting popularity information into item property embedding, e.g., id embedding. From the long-tail distribution shift perspective, the sparse interactions of long-tail items lead to insufficient learning of them. The resultant distribution discrepancy between hot and long-tail items would not only inherit the bias, but also amplify the bias. Existing work addresses this issue with inverse propensity scoring (IPS) or causal embeddings. However, we argue that not all popularity biases mean bad effects, i.e., some items show higher popularity due to better quality or conform to current trends, which deserve more recommendations. Blindly seeking unbiased learning may inhibit high-quality or fashionable items. To make better use of the popularity bias, we propose a co-training disentangled domain adaptation network (CD$^2$AN), which can co-train both biased and unbiased models. Specifically, for popularity distribution shift, CD$^2$AN disentangles item property representation and popularity representation from item property embedding. For long-tail distribution shift, we introduce additional unexposed items (most are long-tail items) to align the distribution of hot and long-tail item property representations. Further, from the instances perspective, we carefully design the item similarity regularization to learn comprehensive item representation, which encourages item pairs with more effective co-occurrences patterns to have more similar item property representations. Based on offline evaluations and online A/B tests, we show that CD$^2$AN outperforms the existing debiased solutions. Currently, CD$^2$AN has been successfully deployed at Mobile Taobao App and handling major online traffic.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
齐新发布了新的文献求助10
刚刚
LI完成签到,获得积分10
1秒前
学术混子发布了新的文献求助10
1秒前
猫也不知道完成签到,获得积分10
1秒前
十二完成签到,获得积分10
2秒前
serpant发布了新的文献求助200
2秒前
2秒前
Shawn发布了新的文献求助10
2秒前
2秒前
2秒前
dl发布了新的文献求助10
3秒前
3秒前
hhj02发布了新的文献求助10
3秒前
yin应助Wangyicong采纳,获得10
3秒前
鸡脖侠完成签到,获得积分10
5秒前
ice发布了新的文献求助10
5秒前
小卡拉米完成签到,获得积分10
5秒前
纷纭完成签到,获得积分10
5秒前
monoklatt发布了新的文献求助10
5秒前
浩浩大人完成签到,获得积分20
6秒前
李爱国应助羊大侠采纳,获得10
6秒前
6秒前
7秒前
fuiee完成签到,获得积分10
7秒前
Rui完成签到,获得积分10
7秒前
7秒前
调研昵称发布了新的文献求助10
8秒前
8秒前
8秒前
rosalieshi应助聪聪采纳,获得30
9秒前
归尘应助轩辕沛柔采纳,获得10
9秒前
星辰大海应助hhj02采纳,获得10
9秒前
鲜于妙之发布了新的文献求助10
9秒前
9秒前
qiuyue完成签到,获得积分10
10秒前
Pytong发布了新的文献求助10
10秒前
阿吉泰发布了新的文献求助10
10秒前
淡然的安梦完成签到,获得积分10
10秒前
wpf7848完成签到,获得积分10
10秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
The Laschia-complex (Basidiomycetes) 600
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3540424
求助须知:如何正确求助?哪些是违规求助? 3117819
关于积分的说明 9332524
捐赠科研通 2815586
什么是DOI,文献DOI怎么找? 1547670
邀请新用户注册赠送积分活动 721099
科研通“疑难数据库(出版商)”最低求助积分说明 712445