FusionDTA: attention-based feature polymerizer and knowledge distillation for drug-target binding affinity prediction

联营 计算机科学 编码器 基线(sea) 人工智能 特征(语言学) 机器学习 冗余(工程) 数据挖掘 领域知识 可视化 模式识别(心理学) 语言学 海洋学 哲学 地质学 操作系统
作者
Weining Yuan,Guanxing Chen,Calvin Yu‐Chian Chen
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (1) 被引量:84
标识
DOI:10.1093/bib/bbab506
摘要

Abstract The prediction of drug-target affinity (DTA) plays an increasingly important role in drug discovery. Nowadays, lots of prediction methods focus on feature encoding of drugs and proteins, but ignore the importance of feature aggregation. However, the increasingly complex encoder networks lead to the loss of implicit information and excessive model size. To this end, we propose a deep-learning-based approach namely FusionDTA. For the loss of implicit information, a novel muti-head linear attention mechanism was utilized to replace the rough pooling method. This allows FusionDTA aggregates global information based on attention weights, instead of selecting the largest one as max-pooling does. To solve the redundancy issue of parameters, we applied knowledge distillation in FusionDTA by transfering learnable information from teacher model to student. Results show that FusionDTA performs better than existing models for the test domain on all evaluation metrics. We obtained concordance index (CI) index of 0.913 and 0.906 in Davis and KIBA dataset respectively, compared with 0.893 and 0.891 of previous state-of-art model. Under the cold-start constrain, our model proved to be more robust and more effective with unseen inputs than baseline methods. In addition, the knowledge distillation did save half of the parameters of the model, with only 0.006 reduction in CI index. Even FusionDTA with half the parameters could easily exceed the baseline on all metrics. In general, our model has superior performance and improves the effect of drug–target interaction (DTI) prediction. The visualization of DTI can effectively help predict the binding region of proteins during structure-based drug design.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
2秒前
123456发布了新的文献求助10
2秒前
miemieyang完成签到,获得积分10
2秒前
CodeCraft应助ZSC采纳,获得10
2秒前
3秒前
生动娩发布了新的文献求助100
3秒前
XuanQi完成签到,获得积分10
4秒前
aa发布了新的文献求助10
4秒前
米米发布了新的文献求助10
5秒前
世隐完成签到,获得积分10
5秒前
7秒前
9秒前
10秒前
10秒前
斯文败类应助米米采纳,获得10
11秒前
在水一方应助wuqs采纳,获得10
11秒前
11秒前
13秒前
13秒前
栖风完成签到,获得积分10
13秒前
科目三应助晓晓采纳,获得10
14秒前
WJF发布了新的文献求助10
15秒前
15秒前
NexusExplorer应助科研通管家采纳,获得10
15秒前
15秒前
fiife应助科研通管家采纳,获得10
15秒前
大个应助科研通管家采纳,获得10
15秒前
深情安青应助科研通管家采纳,获得10
15秒前
15秒前
fiife应助科研通管家采纳,获得10
15秒前
完美世界应助科研通管家采纳,获得10
15秒前
无极微光应助科研通管家采纳,获得20
15秒前
BowieHuang应助科研通管家采纳,获得10
15秒前
BowieHuang应助科研通管家采纳,获得10
15秒前
领导范儿应助科研通管家采纳,获得10
15秒前
CipherSage应助科研通管家采纳,获得10
15秒前
无花果应助科研通管家采纳,获得10
15秒前
15秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599407
求助须知:如何正确求助?哪些是违规求助? 4685010
关于积分的说明 14837502
捐赠科研通 4668037
什么是DOI,文献DOI怎么找? 2537906
邀请新用户注册赠送积分活动 1505398
关于科研通互助平台的介绍 1470783