FusionDTA: attention-based feature polymerizer and knowledge distillation for drug-target binding affinity prediction

联营 计算机科学 编码器 基线(sea) 人工智能 特征(语言学) 机器学习 冗余(工程) 数据挖掘 领域知识 可视化 模式识别(心理学) 操作系统 海洋学 地质学 哲学 语言学
作者
Weining Yuan,Guanxing Chen,Calvin Yu‐Chian Chen
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (1) 被引量:53
标识
DOI:10.1093/bib/bbab506
摘要

The prediction of drug-target affinity (DTA) plays an increasingly important role in drug discovery. Nowadays, lots of prediction methods focus on feature encoding of drugs and proteins, but ignore the importance of feature aggregation. However, the increasingly complex encoder networks lead to the loss of implicit information and excessive model size. To this end, we propose a deep-learning-based approach namely FusionDTA. For the loss of implicit information, a novel muti-head linear attention mechanism was utilized to replace the rough pooling method. This allows FusionDTA aggregates global information based on attention weights, instead of selecting the largest one as max-pooling does. To solve the redundancy issue of parameters, we applied knowledge distillation in FusionDTA by transfering learnable information from teacher model to student. Results show that FusionDTA performs better than existing models for the test domain on all evaluation metrics. We obtained concordance index (CI) index of 0.913 and 0.906 in Davis and KIBA dataset respectively, compared with 0.893 and 0.891 of previous state-of-art model. Under the cold-start constrain, our model proved to be more robust and more effective with unseen inputs than baseline methods. In addition, the knowledge distillation did save half of the parameters of the model, with only 0.006 reduction in CI index. Even FusionDTA with half the parameters could easily exceed the baseline on all metrics. In general, our model has superior performance and improves the effect of drug-target interaction (DTI) prediction. The visualization of DTI can effectively help predict the binding region of proteins during structure-based drug design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
孤独的珩发布了新的文献求助10
刚刚
孙悦完成签到,获得积分10
1秒前
lu完成签到,获得积分10
1秒前
Rachel发布了新的文献求助10
1秒前
Jimmy发布了新的文献求助10
1秒前
丘比特应助隐形的易巧采纳,获得10
1秒前
仁爱书白发布了新的文献求助10
2秒前
善学以致用应助zhui采纳,获得10
2秒前
2秒前
2秒前
小蘑菇应助拼搏起眸采纳,获得10
2秒前
山止川行完成签到 ,获得积分10
2秒前
2秒前
3秒前
okghy发布了新的文献求助10
3秒前
zcydbttj2011完成签到 ,获得积分10
3秒前
在水一方应助哈哈哈采纳,获得10
3秒前
3秒前
优美元枫完成签到,获得积分10
4秒前
5秒前
赵胜男完成签到 ,获得积分10
5秒前
6秒前
共享精神应助坚强的樱采纳,获得10
6秒前
7秒前
千陽完成签到,获得积分10
7秒前
bluesiryao完成签到,获得积分10
7秒前
Miracle完成签到,获得积分10
7秒前
托丽莲睡拿完成签到,获得积分10
7秒前
7秒前
7秒前
DAYTOY发布了新的文献求助50
8秒前
杀出个黎明举报求助违规成功
8秒前
whatever举报求助违规成功
8秒前
iNk举报求助违规成功
8秒前
8秒前
linxue完成签到,获得积分10
8秒前
蛋蛋1完成签到,获得积分10
9秒前
9秒前
10秒前
ss发布了新的文献求助10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794