联营
计算机科学
编码器
基线(sea)
人工智能
特征(语言学)
机器学习
冗余(工程)
数据挖掘
领域知识
可视化
模式识别(心理学)
操作系统
海洋学
地质学
哲学
语言学
作者
Weining Yuan,Guanxing Chen,Calvin Yu‐Chian Chen
摘要
The prediction of drug-target affinity (DTA) plays an increasingly important role in drug discovery. Nowadays, lots of prediction methods focus on feature encoding of drugs and proteins, but ignore the importance of feature aggregation. However, the increasingly complex encoder networks lead to the loss of implicit information and excessive model size. To this end, we propose a deep-learning-based approach namely FusionDTA. For the loss of implicit information, a novel muti-head linear attention mechanism was utilized to replace the rough pooling method. This allows FusionDTA aggregates global information based on attention weights, instead of selecting the largest one as max-pooling does. To solve the redundancy issue of parameters, we applied knowledge distillation in FusionDTA by transfering learnable information from teacher model to student. Results show that FusionDTA performs better than existing models for the test domain on all evaluation metrics. We obtained concordance index (CI) index of 0.913 and 0.906 in Davis and KIBA dataset respectively, compared with 0.893 and 0.891 of previous state-of-art model. Under the cold-start constrain, our model proved to be more robust and more effective with unseen inputs than baseline methods. In addition, the knowledge distillation did save half of the parameters of the model, with only 0.006 reduction in CI index. Even FusionDTA with half the parameters could easily exceed the baseline on all metrics. In general, our model has superior performance and improves the effect of drug-target interaction (DTI) prediction. The visualization of DTI can effectively help predict the binding region of proteins during structure-based drug design.
科研通智能强力驱动
Strongly Powered by AbleSci AI