Cooperative coupling strategy for constructing 0D/2D carbon nitride composites with strengthened chemical interaction for enhanced photocatalytic applications

材料科学 杂原子 共价键 光催化 光降解 纳米片 异质结 兴奋剂 化学工程 石墨氮化碳 氮化碳 催化作用 复合材料 纳米技术 光化学 化学 有机化学 光电子学 工程类 戒指(化学)
作者
Kunqiao Li,Yanqiu Jiang,Wei Rao,Yudong Li,Xing Liu,Jian Zhang,Xianzhu Xu,Kaifeng Lin
出处
期刊:Chemical Engineering Journal [Elsevier BV]
卷期号:431: 134075-134075 被引量:57
标识
DOI:10.1016/j.cej.2021.134075
摘要

It is difficult for hydrophobic g-C3N4 to construct tight heterogeneous connection with hydrophilic carbon dots (CDs), resulting in deficient charge transfer and restricted interfacial attachment between two components. Doping is an efficient strategy to firmly strengthen the hybridization of g-C3N4/CDs composites by inducing robust π–π conjugates or covalent chemical bonds for strong CDs anchoring to g-C3N4. In this work, a novel CDs anchored and S, Cl co-doped carbon nitride (CSCl-C3N4) nanosheet is rationally designed and successfully fabricated for strong interfacial connection of g-C3N4/CDs. During the formation process, chlorine atoms are doped within the CDs and C-Cl covalent bond is detected. The strong interaction anchors CDs on g-C3N4 and endows heterojunctions more compact connection. Systematic analyses demonstrate that CSCl-C3N4 exhibits remarkably enhanced photocatalytic performance for water splitting. Loading 0.5 wt% CDs to S, Cl co-doped C3N4 achieves the optimal photocatalytic activity among a series of samples (192.49 μmol∙h−1), as evidenced by 25 times that of pristine C3N4 for generating hydrogen. Furthermore, the composite also exhibits considerable photocatalytic activity for photodegradation of tetracycline, in which the degradation rate is 15.3 times that of pristine C3N4. Density functional theory calculations and experimental results are employed to investigate the doping positions of heteroatoms within composites. ∙O2− was verified for predominating during photodegradation process to remove tetracycline by radical scavenge experiments. Based on the significant performance of CSCl-C3N4, the possible mechanism of photocatalytic reactions is put forward. The study provides a novel perspective for modifying nanostructures and constructing heterogeneous interfaces with compact connection via combining anchoring of CDs and doping strategies. The newly fabricated CSCl-C3N4 is a considerable photocatalyst in multifunctional applications for solar energy conversion and pollution abatement.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
默存完成签到,获得积分10
刚刚
量子星尘发布了新的文献求助10
1秒前
panda完成签到 ,获得积分10
4秒前
5秒前
专注的觅云完成签到 ,获得积分10
5秒前
HH完成签到,获得积分10
5秒前
6秒前
小恐龙飞飞完成签到 ,获得积分10
7秒前
chen完成签到 ,获得积分10
10秒前
bckl888完成签到,获得积分10
10秒前
发发旦旦发布了新的文献求助10
12秒前
wyuanhu完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
16秒前
xcuwlj完成签到 ,获得积分10
23秒前
量子星尘发布了新的文献求助10
23秒前
小黑猫跑酷完成签到 ,获得积分10
24秒前
称心翠容完成签到,获得积分10
29秒前
科研通AI6应助siv采纳,获得10
30秒前
卫卫完成签到 ,获得积分10
31秒前
32秒前
Liziqi823完成签到,获得积分10
32秒前
资格丘二完成签到 ,获得积分10
35秒前
量子星尘发布了新的文献求助10
38秒前
星星发布了新的文献求助10
38秒前
依依完成签到 ,获得积分10
39秒前
所所应助苏苏没有可乐采纳,获得10
40秒前
鸣笛应助胖小羊采纳,获得10
42秒前
蓝华完成签到 ,获得积分10
45秒前
搬砖的化学男完成签到 ,获得积分10
45秒前
47秒前
包容店员完成签到 ,获得积分10
47秒前
48秒前
Canma完成签到 ,获得积分10
49秒前
赵程程发布了新的文献求助10
50秒前
52秒前
量子星尘发布了新的文献求助10
54秒前
罗杰完成签到,获得积分10
55秒前
量子星尘发布了新的文献求助10
1分钟前
小事完成签到 ,获得积分10
1分钟前
幸福妙柏完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4597530
求助须知:如何正确求助?哪些是违规求助? 4009101
关于积分的说明 12409876
捐赠科研通 3688331
什么是DOI,文献DOI怎么找? 2033101
邀请新用户注册赠送积分活动 1066366
科研通“疑难数据库(出版商)”最低求助积分说明 951605