A convolutional neural network‐based comparative study for pepper seed classification: Analysis of selected deep features with support vector machine

胡椒粉 栽培 人工智能 卷积神经网络 支持向量机 模式识别(心理学) 数学 核(代数) 计算机科学 园艺 生物 组合数学
作者
Kadir Sabancı,Muhammet Fatih Aslan,Ewa Ropelewska,Muhammed Fahri Ünlerşen
出处
期刊:Journal of Food Process Engineering [Wiley]
卷期号:45 (6) 被引量:51
标识
DOI:10.1111/jfpe.13955
摘要

Abstract The seeds of high quality are very important for the cultivation of the pepper. The required cultivation practices and growing conditions may be affected by the cultivar. Also, the productivity and properties of pepper depend on the cultivar. The selection of appropriate seed cultivars may be necessary for the breeding programs. The cultivar differentiation of pepper seeds may be tested by the human eye. However, small sizes and visual similarities make it difficult to distinguish between seed cultivars. Computer vision and artificial intelligence can provide high cultivar discrimination accuracy and the procedures are objective and fast. This study aimed to classify pepper seeds belonging to different cultivars with convolutional neural network (CNN) models. The seeds were obtained from green, orange, red, and yellow pepper cultivars. A flatbed scanner was used to acquire the pepper seed images. After the image acquisition, the procedure applied was preprocessing of the images, data augmentation using different techniques and then deep learning‐based classification. Two approaches have been proposed for classification. In the first approach, CNN models (ResNet18 and ResNet50) were trained for pepper seeds. In the second approach, different from the first, the features of pretrained CNN models were fused, and feature selection was applied to the fused features. Classification using all features and selected features was performed with the support vector machine (SVM) with different kernel functions (Linear, Quadratic, Cubic, Gaussian). The accuracies in the first approximation were 98.05% and 97.07% for ResNet50 and ResNet18, respectively. In the second approach, CNN‐SVM‐Cubic achieved up to 99.02% accuracy with the selected features. Practical applications In precision agriculture, it is very important that the seeds be of the same type for the purification and standardization of the crop culture. Performing this classification manually with human assistance will result in subjective, slow, and low standard outcomes. To overcome such problems, classification supported by artificial intelligence and machine vision systems emerges as an important tool. In this study, a highly successful classification system is presented according to the visual characteristics of pepper seeds. The proposed models can be preferred in practice for identifying pepper seeds and detecting falsification or ensuring their reliability. It will prevent mixing of different pepper seeds with different attributes for processing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
TURBO发布了新的文献求助10
刚刚
nove999完成签到 ,获得积分10
1秒前
meng发布了新的文献求助10
1秒前
勤恳的嚓茶完成签到,获得积分10
3秒前
一块巧克力完成签到,获得积分20
3秒前
车剑锋完成签到,获得积分10
3秒前
张朝程发布了新的文献求助10
3秒前
5秒前
鳗鱼歌曲完成签到,获得积分10
5秒前
F123456完成签到,获得积分10
7秒前
7秒前
TURBO完成签到,获得积分10
7秒前
文心同学完成签到,获得积分0
7秒前
7秒前
8秒前
8秒前
计伟完成签到,获得积分10
8秒前
10秒前
222完成签到,获得积分10
10秒前
Meng完成签到,获得积分10
10秒前
不对也没错完成签到,获得积分10
10秒前
循环不好的Cu完成签到,获得积分10
11秒前
hanshishengye完成签到 ,获得积分10
11秒前
12秒前
计伟发布了新的文献求助10
12秒前
tian发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
13秒前
ZHANG完成签到,获得积分10
14秒前
刘cc完成签到,获得积分10
14秒前
随性完成签到,获得积分10
14秒前
听话的亦云完成签到,获得积分10
15秒前
15秒前
16秒前
www完成签到 ,获得积分10
16秒前
乐平KYXK应助qx采纳,获得10
17秒前
zhuxd完成签到,获得积分10
17秒前
OIIII完成签到,获得积分10
17秒前
xuanbao完成签到,获得积分10
17秒前
huangyi发布了新的文献求助10
18秒前
然来溪完成签到 ,获得积分10
18秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953552
求助须知:如何正确求助?哪些是违规求助? 3499037
关于积分的说明 11093764
捐赠科研通 3229662
什么是DOI,文献DOI怎么找? 1785694
邀请新用户注册赠送积分活动 869467
科研通“疑难数据库(出版商)”最低求助积分说明 801470