A convolutional neural network‐based comparative study for pepper seed classification: Analysis of selected deep features with support vector machine

胡椒粉 栽培 人工智能 卷积神经网络 支持向量机 模式识别(心理学) 数学 核(代数) 计算机科学 园艺 生物 组合数学
作者
Kadir Sabancı,Muhammet Fatih Aslan,Ewa Ropelewska,Muhammed Fahri Ünlerşen
出处
期刊:Journal of Food Process Engineering [Wiley]
卷期号:45 (6) 被引量:51
标识
DOI:10.1111/jfpe.13955
摘要

Abstract The seeds of high quality are very important for the cultivation of the pepper. The required cultivation practices and growing conditions may be affected by the cultivar. Also, the productivity and properties of pepper depend on the cultivar. The selection of appropriate seed cultivars may be necessary for the breeding programs. The cultivar differentiation of pepper seeds may be tested by the human eye. However, small sizes and visual similarities make it difficult to distinguish between seed cultivars. Computer vision and artificial intelligence can provide high cultivar discrimination accuracy and the procedures are objective and fast. This study aimed to classify pepper seeds belonging to different cultivars with convolutional neural network (CNN) models. The seeds were obtained from green, orange, red, and yellow pepper cultivars. A flatbed scanner was used to acquire the pepper seed images. After the image acquisition, the procedure applied was preprocessing of the images, data augmentation using different techniques and then deep learning‐based classification. Two approaches have been proposed for classification. In the first approach, CNN models (ResNet18 and ResNet50) were trained for pepper seeds. In the second approach, different from the first, the features of pretrained CNN models were fused, and feature selection was applied to the fused features. Classification using all features and selected features was performed with the support vector machine (SVM) with different kernel functions (Linear, Quadratic, Cubic, Gaussian). The accuracies in the first approximation were 98.05% and 97.07% for ResNet50 and ResNet18, respectively. In the second approach, CNN‐SVM‐Cubic achieved up to 99.02% accuracy with the selected features. Practical applications In precision agriculture, it is very important that the seeds be of the same type for the purification and standardization of the crop culture. Performing this classification manually with human assistance will result in subjective, slow, and low standard outcomes. To overcome such problems, classification supported by artificial intelligence and machine vision systems emerges as an important tool. In this study, a highly successful classification system is presented according to the visual characteristics of pepper seeds. The proposed models can be preferred in practice for identifying pepper seeds and detecting falsification or ensuring their reliability. It will prevent mixing of different pepper seeds with different attributes for processing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小星星完成签到 ,获得积分10
1秒前
1秒前
Akim应助TUDO采纳,获得10
1秒前
2秒前
眯眯眼的衬衫应助overlood采纳,获得10
4秒前
4秒前
5秒前
5秒前
john完成签到,获得积分10
6秒前
7秒前
飘逸的青雪完成签到,获得积分10
7秒前
8秒前
慕楠完成签到,获得积分10
9秒前
OsHTAS完成签到,获得积分10
9秒前
高高尔蓉发布了新的文献求助10
9秒前
咖啡博士完成签到,获得积分10
9秒前
木瓜小五哥完成签到,获得积分10
10秒前
entang发布了新的文献求助10
10秒前
哈哈哈完成签到,获得积分10
11秒前
温眼张完成签到,获得积分10
11秒前
空中风也完成签到,获得积分10
11秒前
杨贝贝发布了新的文献求助10
12秒前
端庄怜容完成签到,获得积分10
13秒前
13秒前
帅玉玉完成签到,获得积分10
13秒前
14秒前
明晨应助西瓜藤子采纳,获得10
14秒前
芽芽豆完成签到 ,获得积分10
15秒前
wentong完成签到,获得积分10
15秒前
16秒前
学呀学完成签到 ,获得积分10
16秒前
雪雨夜心完成签到,获得积分10
16秒前
柯柯完成签到,获得积分10
17秒前
拙青完成签到,获得积分10
18秒前
小王完成签到,获得积分10
18秒前
苏利文完成签到,获得积分20
18秒前
Tia完成签到 ,获得积分10
18秒前
18秒前
aaa发布了新的文献求助10
19秒前
甜美的夏之完成签到,获得积分10
19秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3484618
求助须知:如何正确求助?哪些是违规求助? 3073608
关于积分的说明 9131555
捐赠科研通 2765268
什么是DOI,文献DOI怎么找? 1517831
邀请新用户注册赠送积分活动 702269
科研通“疑难数据库(出版商)”最低求助积分说明 701190