异戊二烯
氮氧化物
特大城市
北京
臭氧
环境科学
气溶胶
大气科学
日循环
空气质量指数
环境化学
气象学
化学
地理
中国
生态学
有机化学
考古
地质学
共聚物
生物
燃烧
聚合物
作者
Yang Gao,Mingchen Ma,Feifan Yan,Hang Su,Shuxiao Wang,Hong Liao,Bin Zhao,Xuemei Wang,Yele Sun,James R. Hopkins,Qi Chen,Pingqing Fu,Alastair C. Lewis,Qionghui Qiu,Xiaohong Yao,Huiwang Gao
标识
DOI:10.1016/j.scitotenv.2021.152654
摘要
The impact of biogenic emissions on ozone and secondary organic aerosol (SOA) has been widely acknowledged; nevertheless, biogenic emissions emitted from urban landscapes have been largely ignored. We find that including urban isoprene in megacities like Beijing improves not only the modeled isoprene concentrations but also its diurnal cycle. Specifically, the mean bias of the simulated isoprene concentrations is reduced from 87% to 39% by adding urban isoprene emissions while keeping the diurnal cycle the same as that in non-urban or rural areas. Further adjusting the diurnal cycle of isoprene emissions to the urban profile steers the original early morning peak of the isoprene concentration to a double quasi-peak, i.e., bell shape, consistent with observations. The efficiency of ozone generation caused by isoprene emissions in urban Beijing is found to be twice as large as those in rural areas, indicative of vital roles of urban BVOC emissions in modulating the ozone formation. Our study also shows that in the future along with NOx emission reduction, isoprene emissions from urban landscapes will become more important for the formation of ozone in urban area, and their contributions may exceed that of isoprene caused by transport from rural areas. Finally, the impact of biogenic emissions on SOA is examined, revealing that biogenic induced SOA accounts for 16% of the total SOA in urban Beijing. The effect of isoprene on SOA (iSOA) is modulated through two pathways associated with the abundance of NOx emissions, and the effect can be amplified in future when NOx emissions are reduced. The findings of our study are not limited to Beijing but also apply to other megacities or densely populated regions, suggesting an urgent need to construct an accurate emission inventory for urban landscapes and evaluate their impact on ozone and SOA in air quality planning and management.
科研通智能强力驱动
Strongly Powered by AbleSci AI