膜
电渗析
氟化物
化学工程
纳米纤维
离子交换
耗散颗粒动力学模拟
海水淡化
材料科学
化学
离子
纳米技术
无机化学
有机化学
聚合物
复合材料
生物化学
工程类
作者
Yan Zhao,Wenjing Lü,Natalie Mamrol,Tim Croes,Zhaohuan Mai,Sofie Houtmeyers,Raf Dewil,Yang Zhang,Xing Yang,Bart Van der Bruggen
标识
DOI:10.1016/j.cej.2021.134201
摘要
The development of fluoride selective separation technology is essential for water purification and simultaneous ion capture. In this paper, a novel Kevlar amide nanofiber (KANF) based anion exchange membrane for fluoride capture was reported. The incorporation of positively charge groups into the KNAF's framework was enabled through a novel yet facile method, i.e., through the embedding and subsequent self-assembly of hydroxypropyltrimethyl ammonium chloride chitosan (HACC) into the KANF-based hydrogel framework. The membrane surface was further sulfonated to enhance the fluoride selectivity. Dissipative particle dynamics simulation revealed that the highly hydrophilic and positively charged HACC was homogeneously embedded into the KANF-based hydrogel framework. Membranes with varying HACC content showed up to 3.7 mmol g−1 ion exchange capacity and 17% water content. Compared to a commercial anion exchange membrane (AMX membrane), the HACC#KNAF membranes exhibited a much lower surface electrical resistance (e.g., ∼1.23 Ω cm2) and exceptional desalination/concentration efficiency with NaF solution in electrodialysis. The sulphonated membrane S-HACC#KNAF achieved a permselectivity of 2.75 and selective efficiency of 17% favoring the F- cross-membrane transport over SO42-, outperforming its commercial counterpart. The resulting membranes were significantly less prone to foulant deposition and exhibited superior stability over semi long-term tests. The design principles developed will greatly broaden the possibilities of KANF-based membranes' fabrication for achieving efficient ion separation towards sustainable ion capture.
科研通智能强力驱动
Strongly Powered by AbleSci AI