Self-assembled embedding of ion exchange materials into nanofiber-based hydrogel framework for fluoride capture

电渗析 氟化物 化学工程 纳米纤维 离子交换 耗散颗粒动力学模拟 海水淡化 材料科学 化学 离子 纳米技术 无机化学 有机化学 聚合物 复合材料 生物化学 工程类
作者
Yan Zhao,Wenjing Lü,Natalie Mamrol,Tim Croes,Zhaohuan Mai,Sofie Houtmeyers,Raf Dewil,Yang Zhang,Xing Yang,Bart Van der Bruggen
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:431: 134201-134201 被引量:37
标识
DOI:10.1016/j.cej.2021.134201
摘要

The development of fluoride selective separation technology is essential for water purification and simultaneous ion capture. In this paper, a novel Kevlar amide nanofiber (KANF) based anion exchange membrane for fluoride capture was reported. The incorporation of positively charge groups into the KNAF's framework was enabled through a novel yet facile method, i.e., through the embedding and subsequent self-assembly of hydroxypropyltrimethyl ammonium chloride chitosan (HACC) into the KANF-based hydrogel framework. The membrane surface was further sulfonated to enhance the fluoride selectivity. Dissipative particle dynamics simulation revealed that the highly hydrophilic and positively charged HACC was homogeneously embedded into the KANF-based hydrogel framework. Membranes with varying HACC content showed up to 3.7 mmol g−1 ion exchange capacity and 17% water content. Compared to a commercial anion exchange membrane (AMX membrane), the HACC#KNAF membranes exhibited a much lower surface electrical resistance (e.g., ∼1.23 Ω cm2) and exceptional desalination/concentration efficiency with NaF solution in electrodialysis. The sulphonated membrane S-HACC#KNAF achieved a permselectivity of 2.75 and selective efficiency of 17% favoring the F- cross-membrane transport over SO42-, outperforming its commercial counterpart. The resulting membranes were significantly less prone to foulant deposition and exhibited superior stability over semi long-term tests. The design principles developed will greatly broaden the possibilities of KANF-based membranes' fabrication for achieving efficient ion separation towards sustainable ion capture.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
1秒前
33完成签到,获得积分10
1秒前
NCS完成签到,获得积分10
1秒前
乐乐应助香橙采纳,获得10
1秒前
狄拉克乐园完成签到,获得积分10
2秒前
爆米花应助renkemaomao采纳,获得10
2秒前
完美世界应助Max采纳,获得10
2秒前
Cyrus完成签到,获得积分10
2秒前
2秒前
充电宝应助楚天正阔采纳,获得10
2秒前
量子星尘发布了新的文献求助10
3秒前
老迟到的友菱完成签到,获得积分10
3秒前
4秒前
NexusExplorer应助小天才采纳,获得10
5秒前
strawberry发布了新的文献求助10
5秒前
5秒前
斯文败类应助DYZ采纳,获得10
5秒前
11发布了新的文献求助30
6秒前
肯德大厨完成签到 ,获得积分10
6秒前
jojo完成签到 ,获得积分10
6秒前
6秒前
7秒前
Owen应助lixxx采纳,获得10
7秒前
高山流水应助Makta采纳,获得10
7秒前
快乐的一只小跳蛙完成签到,获得积分10
7秒前
爆米花应助XNNI采纳,获得30
8秒前
9秒前
哆啦A梦完成签到 ,获得积分10
9秒前
xxy发布了新的文献求助10
9秒前
大模型应助zxy采纳,获得10
10秒前
杉杉完成签到,获得积分10
11秒前
11秒前
深海蓝鱼发布了新的文献求助30
11秒前
踏实的水云完成签到,获得积分10
11秒前
Owen应助MNing采纳,获得10
11秒前
bai完成签到,获得积分10
11秒前
11秒前
CodeCraft应助千陽采纳,获得10
12秒前
斗宗强者完成签到,获得积分20
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5653573
求助须知:如何正确求助?哪些是违规求助? 4790162
关于积分的说明 15064753
捐赠科研通 4812180
什么是DOI,文献DOI怎么找? 2574341
邀请新用户注册赠送积分活动 1529955
关于科研通互助平台的介绍 1488680