亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Analysis and Optimization of Transport Losses in Hydroxide Exchange Membrane Fuel Cells

质子交换膜燃料电池 电解质 电化学动力学 极化(电化学) 欧姆接触 材料科学 化学工程 电导率 电化学 化学 燃料电池 纳米技术 电极 工程类 物理化学 图层(电子)
作者
Lin Shi,C. Weiss,Brian P. Setzler,Teng Wang,Santiago Rojas‐Carbonell,Lan Wang,Keda Hu,Junhua Wang,Yushan Yan
出处
期刊:Meeting abstracts 卷期号:MA2019-02 (36): 1693-1693
标识
DOI:10.1149/ma2019-02/36/1693
摘要

As an emerging alternative to proton exchange membrane fuel cells (PEMFCs), hydroxide exchange membrane fuel cells (HEMFCs) are more cost-effective due to PGM-free catalysts options, more affordable bipolar plate production, and other potential savings. 1 However, unlike PEMFCs, the HEMFC technology is in its early phases and there is a continuous effort to improve the performance and durability through the advancement of materials and optimization of operating conditions. The polarization curve is one of the most common methods of testing a fuel cell. A typical polarization curve for a fuel cell consists of open circuit potential (crossover losses), low-current behavior (kinetics losses), moderate-current behavior (ohmic losses), and high-current behavior (transport losses). Crossover and ohmic losses are determined by electrolytes, kinetics losses depend on catalysts and transport losses involve gas diffusion and water management. In addition, a triple phase boundary comprised of an electrolyte, an electrode and a gaseous reactant is crucial for the electrochemical reactions. Thus, the optimization of all these aspects is critical for HEMFC performance improvement. Here, we focus our work on transport phenomena in a fuel cell. The materials we used are hydroxide exchange membranes (HEMs) and ionomers (HEIs) based on poly(aryl piperidinium) (PAP). 2 The specific chemical structure (shown in Figure 1) endows PAP HEMs with excellent chemical stability, high conductivity and mechanical robustness, making PAP HEMs/HEIs one of the best choices for HEMFC electrolyte. Furthermore, the use of PAP HEMs/HEIs enables operating HEMFCs at 95 °C, which accelerates reaction rates and decreases heat rejection. Optimization of fuel cell operating conditions is vital for water management. Water production by hydrogen oxidation reaction (HOR) tends to cause flooding in the anode, while water consumption from oxygen reduction reaction causes cathode to dry-out. In addition, the electro-osmotic drag pulls water from the cathode to the anode (in the reverse direction of PEMFCs), thus worsening the water management problem further. In this work, observable characteristics in the polarization curve for a flooded HEMFC were found, and a model was developed to describe this issue. Then we demonstrate that balanced water management can be obtained by adjusting the anode relative humidity and back pressure. Limiting current technology is widely employed for PEMFCs to characterize the transport resistance in order to reduce mass-transport losses; however, no one has done this systematically to HEMFCs, although there is a difference between limiting current behavior of PEMFCs and HEMFCs. We have found this technique useful to screen catalysts, optimize catalyst loading and adjust ionomer loading to improve the efficiency of gas diffusion, which is very helpful when switching from oxygen to air on cathode. Our optimized HEMFC can achieve a peak power density of 2.02 W cm -2 in H 2 /O 2 and 1.33 W cm -2 in H 2 /air with platinum group metal (PGM) based catalysts (shown in Figure 2). The current density at 0.663 V for cell voltage is about 1.70 A cm -2 , which is suitable for hydrogen fuel cell vehicles. References B. P. Setzler, Z. Zhuang, J. A. Wittkopf, and Y. Yan, Nat Nanotechnol, 11 (12), 1020-1025 (2016). J. Wang, Y. Zhao, B. P. Setzler, S. Rojas-Carbonell, C. Ben Yehuda, A. Amel, M. Page, L. Wang, K. Hu, L. Shi, S. Gottesfeld, B. Xu, and Y. Yan, Nature Energy, (2019) doi:10.1038/s41560-019-0372-8. Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
朝云完成签到,获得积分10
5秒前
又活了一天完成签到 ,获得积分10
6秒前
尊敬的凝丹完成签到 ,获得积分10
6秒前
黎明深雪完成签到 ,获得积分10
8秒前
万能图书馆应助ztx采纳,获得10
9秒前
两袖清风完成签到 ,获得积分10
12秒前
13秒前
14秒前
Moo5_zzZ完成签到,获得积分10
14秒前
烟花应助hy123采纳,获得10
15秒前
15秒前
cc完成签到 ,获得积分10
15秒前
stupidZ完成签到,获得积分10
17秒前
17秒前
搜集达人应助狐金华采纳,获得10
19秒前
ztx发布了新的文献求助10
20秒前
酚醛树脂发布了新的文献求助10
20秒前
Moo5_zzZ发布了新的文献求助30
20秒前
小蘑菇应助元气小Liu采纳,获得10
21秒前
罗曼蒂克完成签到,获得积分10
21秒前
量子星尘发布了新的文献求助20
21秒前
英姑应助yzklov采纳,获得10
24秒前
25秒前
outlast完成签到,获得积分10
26秒前
29秒前
ztx完成签到,获得积分10
32秒前
研友_GZbO18完成签到 ,获得积分10
33秒前
欢呼宛秋完成签到,获得积分10
34秒前
元气小Liu给元气小Liu的求助进行了留言
35秒前
基金中中中完成签到,获得积分10
39秒前
40秒前
revew666完成签到 ,获得积分10
41秒前
42秒前
45秒前
浮游应助benhuen采纳,获得10
45秒前
liulu发布了新的文献求助30
52秒前
梁jj发布了新的文献求助10
56秒前
瓅芩完成签到,获得积分10
58秒前
DBP87弹完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5543024
求助须知:如何正确求助?哪些是违规求助? 4629142
关于积分的说明 14610916
捐赠科研通 4570411
什么是DOI,文献DOI怎么找? 2505751
邀请新用户注册赠送积分活动 1483053
关于科研通互助平台的介绍 1454364