Analysis and Optimization of Transport Losses in Hydroxide Exchange Membrane Fuel Cells

质子交换膜燃料电池 电解质 电化学动力学 极化(电化学) 欧姆接触 材料科学 化学工程 电导率 电化学 化学 燃料电池 纳米技术 电极 工程类 物理化学 图层(电子)
作者
Lin Shi,C. Weiss,Brian P. Setzler,Teng Wang,Santiago Rojas‐Carbonell,Lan Wang,Keda Hu,Junhua Wang,Yushan Yan
出处
期刊:Meeting abstracts 卷期号:MA2019-02 (36): 1693-1693
标识
DOI:10.1149/ma2019-02/36/1693
摘要

As an emerging alternative to proton exchange membrane fuel cells (PEMFCs), hydroxide exchange membrane fuel cells (HEMFCs) are more cost-effective due to PGM-free catalysts options, more affordable bipolar plate production, and other potential savings. 1 However, unlike PEMFCs, the HEMFC technology is in its early phases and there is a continuous effort to improve the performance and durability through the advancement of materials and optimization of operating conditions. The polarization curve is one of the most common methods of testing a fuel cell. A typical polarization curve for a fuel cell consists of open circuit potential (crossover losses), low-current behavior (kinetics losses), moderate-current behavior (ohmic losses), and high-current behavior (transport losses). Crossover and ohmic losses are determined by electrolytes, kinetics losses depend on catalysts and transport losses involve gas diffusion and water management. In addition, a triple phase boundary comprised of an electrolyte, an electrode and a gaseous reactant is crucial for the electrochemical reactions. Thus, the optimization of all these aspects is critical for HEMFC performance improvement. Here, we focus our work on transport phenomena in a fuel cell. The materials we used are hydroxide exchange membranes (HEMs) and ionomers (HEIs) based on poly(aryl piperidinium) (PAP). 2 The specific chemical structure (shown in Figure 1) endows PAP HEMs with excellent chemical stability, high conductivity and mechanical robustness, making PAP HEMs/HEIs one of the best choices for HEMFC electrolyte. Furthermore, the use of PAP HEMs/HEIs enables operating HEMFCs at 95 °C, which accelerates reaction rates and decreases heat rejection. Optimization of fuel cell operating conditions is vital for water management. Water production by hydrogen oxidation reaction (HOR) tends to cause flooding in the anode, while water consumption from oxygen reduction reaction causes cathode to dry-out. In addition, the electro-osmotic drag pulls water from the cathode to the anode (in the reverse direction of PEMFCs), thus worsening the water management problem further. In this work, observable characteristics in the polarization curve for a flooded HEMFC were found, and a model was developed to describe this issue. Then we demonstrate that balanced water management can be obtained by adjusting the anode relative humidity and back pressure. Limiting current technology is widely employed for PEMFCs to characterize the transport resistance in order to reduce mass-transport losses; however, no one has done this systematically to HEMFCs, although there is a difference between limiting current behavior of PEMFCs and HEMFCs. We have found this technique useful to screen catalysts, optimize catalyst loading and adjust ionomer loading to improve the efficiency of gas diffusion, which is very helpful when switching from oxygen to air on cathode. Our optimized HEMFC can achieve a peak power density of 2.02 W cm -2 in H 2 /O 2 and 1.33 W cm -2 in H 2 /air with platinum group metal (PGM) based catalysts (shown in Figure 2). The current density at 0.663 V for cell voltage is about 1.70 A cm -2 , which is suitable for hydrogen fuel cell vehicles. References B. P. Setzler, Z. Zhuang, J. A. Wittkopf, and Y. Yan, Nat Nanotechnol, 11 (12), 1020-1025 (2016). J. Wang, Y. Zhao, B. P. Setzler, S. Rojas-Carbonell, C. Ben Yehuda, A. Amel, M. Page, L. Wang, K. Hu, L. Shi, S. Gottesfeld, B. Xu, and Y. Yan, Nature Energy, (2019) doi:10.1038/s41560-019-0372-8. Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
唐文硕发布了新的文献求助10
刚刚
侠客发布了新的文献求助10
1秒前
1秒前
lxt完成签到,获得积分10
2秒前
2秒前
Zx_1993应助wackykao采纳,获得10
3秒前
4秒前
4秒前
4秒前
tooty发布了新的文献求助10
4秒前
52huihui关注了科研通微信公众号
5秒前
5秒前
6秒前
nito发布了新的文献求助10
6秒前
xinxin发布了新的文献求助10
7秒前
共享精神应助北山采纳,获得10
7秒前
侠客完成签到,获得积分10
7秒前
小小月发布了新的文献求助10
7秒前
Akim应助曹梦龙采纳,获得10
8秒前
zheng发布了新的文献求助10
8秒前
凝望发布了新的文献求助10
8秒前
8秒前
赘婿应助泌尿科小医生采纳,获得10
10秒前
刘一一发布了新的文献求助10
10秒前
10秒前
10秒前
xiaolei001应助科研通管家采纳,获得10
10秒前
JamesPei应助科研通管家采纳,获得10
10秒前
隐形曼青应助科研通管家采纳,获得10
10秒前
ding应助科研通管家采纳,获得50
10秒前
giggle应助科研通管家采纳,获得10
10秒前
10秒前
爆米花应助科研通管家采纳,获得10
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
赘婿应助科研通管家采纳,获得10
10秒前
传奇3应助科研通管家采纳,获得10
10秒前
10秒前
CodeCraft应助科研通管家采纳,获得10
10秒前
热心树叶应助科研通管家采纳,获得30
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5521225
求助须知:如何正确求助?哪些是违规求助? 4612762
关于积分的说明 14535207
捐赠科研通 4550234
什么是DOI,文献DOI怎么找? 2493599
邀请新用户注册赠送积分活动 1474715
关于科研通互助平台的介绍 1446175