亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Analysis and Optimization of Transport Losses in Hydroxide Exchange Membrane Fuel Cells

质子交换膜燃料电池 电解质 电化学动力学 极化(电化学) 欧姆接触 材料科学 化学工程 电导率 电化学 化学 燃料电池 纳米技术 电极 工程类 物理化学 图层(电子)
作者
Lin Shi,C. Weiss,Brian P. Setzler,Teng Wang,Santiago Rojas‐Carbonell,Lan Wang,Keda Hu,Junhua Wang,Yushan Yan
出处
期刊:Meeting abstracts 卷期号:MA2019-02 (36): 1693-1693
标识
DOI:10.1149/ma2019-02/36/1693
摘要

As an emerging alternative to proton exchange membrane fuel cells (PEMFCs), hydroxide exchange membrane fuel cells (HEMFCs) are more cost-effective due to PGM-free catalysts options, more affordable bipolar plate production, and other potential savings. 1 However, unlike PEMFCs, the HEMFC technology is in its early phases and there is a continuous effort to improve the performance and durability through the advancement of materials and optimization of operating conditions. The polarization curve is one of the most common methods of testing a fuel cell. A typical polarization curve for a fuel cell consists of open circuit potential (crossover losses), low-current behavior (kinetics losses), moderate-current behavior (ohmic losses), and high-current behavior (transport losses). Crossover and ohmic losses are determined by electrolytes, kinetics losses depend on catalysts and transport losses involve gas diffusion and water management. In addition, a triple phase boundary comprised of an electrolyte, an electrode and a gaseous reactant is crucial for the electrochemical reactions. Thus, the optimization of all these aspects is critical for HEMFC performance improvement. Here, we focus our work on transport phenomena in a fuel cell. The materials we used are hydroxide exchange membranes (HEMs) and ionomers (HEIs) based on poly(aryl piperidinium) (PAP). 2 The specific chemical structure (shown in Figure 1) endows PAP HEMs with excellent chemical stability, high conductivity and mechanical robustness, making PAP HEMs/HEIs one of the best choices for HEMFC electrolyte. Furthermore, the use of PAP HEMs/HEIs enables operating HEMFCs at 95 °C, which accelerates reaction rates and decreases heat rejection. Optimization of fuel cell operating conditions is vital for water management. Water production by hydrogen oxidation reaction (HOR) tends to cause flooding in the anode, while water consumption from oxygen reduction reaction causes cathode to dry-out. In addition, the electro-osmotic drag pulls water from the cathode to the anode (in the reverse direction of PEMFCs), thus worsening the water management problem further. In this work, observable characteristics in the polarization curve for a flooded HEMFC were found, and a model was developed to describe this issue. Then we demonstrate that balanced water management can be obtained by adjusting the anode relative humidity and back pressure. Limiting current technology is widely employed for PEMFCs to characterize the transport resistance in order to reduce mass-transport losses; however, no one has done this systematically to HEMFCs, although there is a difference between limiting current behavior of PEMFCs and HEMFCs. We have found this technique useful to screen catalysts, optimize catalyst loading and adjust ionomer loading to improve the efficiency of gas diffusion, which is very helpful when switching from oxygen to air on cathode. Our optimized HEMFC can achieve a peak power density of 2.02 W cm -2 in H 2 /O 2 and 1.33 W cm -2 in H 2 /air with platinum group metal (PGM) based catalysts (shown in Figure 2). The current density at 0.663 V for cell voltage is about 1.70 A cm -2 , which is suitable for hydrogen fuel cell vehicles. References B. P. Setzler, Z. Zhuang, J. A. Wittkopf, and Y. Yan, Nat Nanotechnol, 11 (12), 1020-1025 (2016). J. Wang, Y. Zhao, B. P. Setzler, S. Rojas-Carbonell, C. Ben Yehuda, A. Amel, M. Page, L. Wang, K. Hu, L. Shi, S. Gottesfeld, B. Xu, and Y. Yan, Nature Energy, (2019) doi:10.1038/s41560-019-0372-8. Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助neko采纳,获得10
2秒前
5秒前
侯锐淇完成签到 ,获得积分10
8秒前
10秒前
xiaowang发布了新的文献求助10
11秒前
moodlunatic发布了新的文献求助30
16秒前
qiuzhu_完成签到 ,获得积分10
21秒前
xiaowang完成签到,获得积分10
21秒前
ceeray23发布了新的文献求助20
21秒前
Hello应助小杨采纳,获得10
22秒前
123456完成签到,获得积分10
27秒前
moodlunatic完成签到,获得积分10
28秒前
30秒前
123456发布了新的文献求助20
31秒前
清爽冬莲完成签到 ,获得积分0
37秒前
39秒前
qiuzhu_发布了新的文献求助10
44秒前
46秒前
鲤鱼发布了新的文献求助10
52秒前
Yiyong发布了新的文献求助20
52秒前
52秒前
52秒前
科研通AI6应助古兰采纳,获得10
55秒前
57秒前
57秒前
1分钟前
Nickzzz发布了新的文献求助10
1分钟前
甜美的沅完成签到 ,获得积分10
1分钟前
失眠的稀发布了新的文献求助10
1分钟前
1分钟前
倷倷完成签到 ,获得积分10
1分钟前
1分钟前
草莓星发布了新的文献求助10
1分钟前
Yanhai发布了新的文献求助10
1分钟前
CipherSage应助科研通管家采纳,获得10
1分钟前
酷波er应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
李健应助科研通管家采纳,获得10
1分钟前
1分钟前
斯文败类应助科研通管家采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5554672
求助须知:如何正确求助?哪些是违规求助? 4639324
关于积分的说明 14655924
捐赠科研通 4581173
什么是DOI,文献DOI怎么找? 2512637
邀请新用户注册赠送积分活动 1487389
关于科研通互助平台的介绍 1458262