Analysis and Optimization of Transport Losses in Hydroxide Exchange Membrane Fuel Cells

质子交换膜燃料电池 电解质 电化学动力学 极化(电化学) 欧姆接触 材料科学 化学工程 电导率 电化学 化学 燃料电池 纳米技术 电极 工程类 物理化学 图层(电子)
作者
Lin Shi,C. Weiss,Brian P. Setzler,Teng Wang,Santiago Rojas‐Carbonell,Lan Wang,Keda Hu,Junhua Wang,Yushan Yan
出处
期刊:Meeting abstracts 卷期号:MA2019-02 (36): 1693-1693
标识
DOI:10.1149/ma2019-02/36/1693
摘要

As an emerging alternative to proton exchange membrane fuel cells (PEMFCs), hydroxide exchange membrane fuel cells (HEMFCs) are more cost-effective due to PGM-free catalysts options, more affordable bipolar plate production, and other potential savings. 1 However, unlike PEMFCs, the HEMFC technology is in its early phases and there is a continuous effort to improve the performance and durability through the advancement of materials and optimization of operating conditions. The polarization curve is one of the most common methods of testing a fuel cell. A typical polarization curve for a fuel cell consists of open circuit potential (crossover losses), low-current behavior (kinetics losses), moderate-current behavior (ohmic losses), and high-current behavior (transport losses). Crossover and ohmic losses are determined by electrolytes, kinetics losses depend on catalysts and transport losses involve gas diffusion and water management. In addition, a triple phase boundary comprised of an electrolyte, an electrode and a gaseous reactant is crucial for the electrochemical reactions. Thus, the optimization of all these aspects is critical for HEMFC performance improvement. Here, we focus our work on transport phenomena in a fuel cell. The materials we used are hydroxide exchange membranes (HEMs) and ionomers (HEIs) based on poly(aryl piperidinium) (PAP). 2 The specific chemical structure (shown in Figure 1) endows PAP HEMs with excellent chemical stability, high conductivity and mechanical robustness, making PAP HEMs/HEIs one of the best choices for HEMFC electrolyte. Furthermore, the use of PAP HEMs/HEIs enables operating HEMFCs at 95 °C, which accelerates reaction rates and decreases heat rejection. Optimization of fuel cell operating conditions is vital for water management. Water production by hydrogen oxidation reaction (HOR) tends to cause flooding in the anode, while water consumption from oxygen reduction reaction causes cathode to dry-out. In addition, the electro-osmotic drag pulls water from the cathode to the anode (in the reverse direction of PEMFCs), thus worsening the water management problem further. In this work, observable characteristics in the polarization curve for a flooded HEMFC were found, and a model was developed to describe this issue. Then we demonstrate that balanced water management can be obtained by adjusting the anode relative humidity and back pressure. Limiting current technology is widely employed for PEMFCs to characterize the transport resistance in order to reduce mass-transport losses; however, no one has done this systematically to HEMFCs, although there is a difference between limiting current behavior of PEMFCs and HEMFCs. We have found this technique useful to screen catalysts, optimize catalyst loading and adjust ionomer loading to improve the efficiency of gas diffusion, which is very helpful when switching from oxygen to air on cathode. Our optimized HEMFC can achieve a peak power density of 2.02 W cm -2 in H 2 /O 2 and 1.33 W cm -2 in H 2 /air with platinum group metal (PGM) based catalysts (shown in Figure 2). The current density at 0.663 V for cell voltage is about 1.70 A cm -2 , which is suitable for hydrogen fuel cell vehicles. References B. P. Setzler, Z. Zhuang, J. A. Wittkopf, and Y. Yan, Nat Nanotechnol, 11 (12), 1020-1025 (2016). J. Wang, Y. Zhao, B. P. Setzler, S. Rojas-Carbonell, C. Ben Yehuda, A. Amel, M. Page, L. Wang, K. Hu, L. Shi, S. Gottesfeld, B. Xu, and Y. Yan, Nature Energy, (2019) doi:10.1038/s41560-019-0372-8. Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助健忘的雨安采纳,获得10
1秒前
dfggg发布了新的文献求助10
1秒前
饱满的问丝完成签到,获得积分10
2秒前
3秒前
大水完成签到 ,获得积分10
4秒前
4秒前
Akira完成签到,获得积分20
5秒前
隐形曼青应助是ok耶采纳,获得10
6秒前
7秒前
7秒前
11111发布了新的文献求助20
8秒前
大水发布了新的文献求助10
10秒前
10秒前
小蘑菇应助保持科研热情采纳,获得10
10秒前
所所应助蓦然采纳,获得10
11秒前
11秒前
爱科研的小蜗啊完成签到,获得积分10
12秒前
从容梦山发布了新的文献求助10
12秒前
12秒前
12秒前
量子星尘发布了新的文献求助10
13秒前
13秒前
14秒前
luo完成签到,获得积分10
15秒前
16秒前
HQQ完成签到,获得积分20
16秒前
Ava应助夏洛采纳,获得10
17秒前
小二郎应助violet采纳,获得10
17秒前
乐观的灭绝完成签到,获得积分10
18秒前
文艺大白菜完成签到,获得积分10
18秒前
难过的谷芹应助无为采纳,获得10
18秒前
情怀应助Ljh采纳,获得10
19秒前
20秒前
20秒前
20秒前
赘婿应助秋qiu采纳,获得10
20秒前
21秒前
21秒前
22秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5737586
求助须知:如何正确求助?哪些是违规求助? 5373212
关于积分的说明 15335749
捐赠科研通 4880965
什么是DOI,文献DOI怎么找? 2623199
邀请新用户注册赠送积分活动 1572027
关于科研通互助平台的介绍 1528848