电导率
共价键
选择性
离子键合
渗透力
膜
离子电导率
化学
盐度
离子
反向电渗析
化学工程
材料科学
有机化学
电极
反渗透
电解质
物理化学
生态学
生物化学
正渗透
生物
工程类
催化作用
电渗析
作者
Shuhua Hou,Wen-Tao Ji,Jianjun Chen,Yunfei Teng,Liping Wen,Lei Jiang
标识
DOI:10.1002/ange.202100205
摘要
Abstract Both high ionic conductivity and selectivity of a membrane are required for efficient salinity gradient energy conversion. An efficient method to improve energy conversion is to align ionic transport along the membrane thickness to address low ionic conductivity in traditional membranes used for energy harvesting. We fabricated a free‐standing covalent organic framework membrane (TpPa‐SO 3 H) with excellent stability and mechanical properties. This membrane with one‐dimensional nanochannels and high charge density demonstrated high ionic conductivity and selectivity. Its power density reached up to 5.9 W m −2 by mixing artificial seawater and river water. Based on our results, we attribute the high energy conversion to the high ion conductivity through aligned one‐dimensional nanochannels and high ion selectivity via the size of the nanochannel at ≈1 nm in the membrane. This study paves the way for designing covalent organic framework membranes for high salinity gradient energy conversion.
科研通智能强力驱动
Strongly Powered by AbleSci AI