Deep learning-based prediction of mandibular growth trend in children with anterior crossbite using cephalometric radiographs

医学 射线照相术 口腔正畸科 下巴 头影测量分析 髁突 口腔颌面外科 牙科 下颌骨(节肢动物口器) 错牙合 头影测量 解剖 放射科 植物 生物
作者
Jianan Zhang,Haiping Lu,Jia Hou,Qiong Wang,Fengyang Yu,Chong Zhong,Cheng-Yi Huang,Si Chen
出处
期刊:BMC Oral Health [Springer Nature]
卷期号:23 (1) 被引量:9
标识
DOI:10.1186/s12903-023-02734-4
摘要

Abstract Background It is difficult for orthodontists to accurately predict the growth trend of the mandible in children with anterior crossbite. This study aims to develop a deep learning model to automatically predict the mandibular growth result into normal or overdeveloped using cephalometric radiographs. Methods A deep convolutional neural network (CNN) model was constructed based on the algorithm ResNet50 and trained on the basis of 256 cephalometric radiographs. The prediction behavior of the model was tested on 40 cephalograms and visualized by equipped with Grad-CAM. The prediction performance of the CNN model was compared with that of three junior orthodontists. Results The deep-learning model showed a good prediction accuracy about 85%, much higher when compared with the 54.2% of the junior orthodontists. The sensitivity and specificity of the model was 0.95 and 0.75 respectively, higher than that of the junior orthodontists (0.62 and 0.47 respectively). The area under the curve value of the deep-learning model was 0.9775. Visual inspection showed that the model mainly focused on the characteristics of special regions including chin, lower edge of the mandible, incisor teeth, airway and condyle to conduct the prediction. Conclusions The deep-learning CNN model could predict the growth trend of the mandible in anterior crossbite children with relatively high accuracy using cephalometric images. The deep learning model made the prediction decision mainly by identifying the characteristics of the regions of chin, lower edge of the mandible, incisor teeth area, airway and condyle in cephalometric images.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Xie发布了新的文献求助10
刚刚
1秒前
weilao发布了新的文献求助30
1秒前
SciGPT应助aaaaa采纳,获得10
1秒前
1秒前
2秒前
Sakura发布了新的文献求助10
2秒前
abc完成签到 ,获得积分10
3秒前
张瑞雪完成签到 ,获得积分10
4秒前
cccdida完成签到,获得积分10
4秒前
dongdong发布了新的文献求助10
4秒前
kuka007发布了新的文献求助10
4秒前
4秒前
少夫人应助652183758采纳,获得10
4秒前
sunflower完成签到,获得积分10
5秒前
messyknots发布了新的文献求助10
5秒前
笑的得美发布了新的文献求助10
6秒前
可爱的函函应助聪明亦玉采纳,获得10
6秒前
丘比特应助微风往事采纳,获得30
6秒前
7秒前
彑丘完成签到 ,获得积分10
7秒前
7秒前
图里琛发布了新的文献求助10
8秒前
热心的靖巧完成签到 ,获得积分10
8秒前
科研通AI2S应助cccdida采纳,获得10
8秒前
8秒前
和谐外套完成签到,获得积分10
9秒前
9秒前
斯文败类应助害羞破茧采纳,获得10
9秒前
10秒前
抱住仙人球应助jf采纳,获得10
10秒前
笑的得美完成签到,获得积分10
10秒前
酷波er应助昨天采纳,获得10
11秒前
科研通AI2S应助Augusterny采纳,获得10
11秒前
阳光曼冬发布了新的文献求助10
11秒前
X_XI完成签到,获得积分10
11秒前
缥缈可乐完成签到,获得积分10
11秒前
霸气小欧发布了新的文献求助10
11秒前
ZW发布了新的文献求助10
11秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
Manual of Sewer Condition Classification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3123390
求助须知:如何正确求助?哪些是违规求助? 2773951
关于积分的说明 7720148
捐赠科研通 2429656
什么是DOI,文献DOI怎么找? 1290409
科研通“疑难数据库(出版商)”最低求助积分说明 621833
版权声明 600251