Achieving Better Category Separability for Hyperspectral Image Classification: A Spatial–Spectral Approach

高光谱成像 计算机科学 人工智能 模式识别(心理学) 透视图(图形) 分类器(UML) 邻接表 像素 空间分析 数据挖掘 数学 算法 统计
作者
Jing Bai,Wei Shi,Zhu Xiao,Talal Ahmed Ali Ali,Fawang Ye,Licheng Jiao
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (7): 9621-9635 被引量:12
标识
DOI:10.1109/tnnls.2023.3235711
摘要

The task of hyperspectral image (HSI) classification has attracted extensive attention. The rich spectral information in HSIs not only provides more detailed information but also brings a lot of redundant information. Redundant information makes spectral curves of different categories have similar trends, which leads to poor category separability. In this article, we achieve better category separability from the perspective of increasing the difference between categories and reducing the variation within category, thus improving the classification accuracy. Specifically, we propose the template spectrum-based processing module from spectral perspective, which can effectively expose the unique characteristics of different categories and reduce the difficulty of model mining key features. Second, we design an adaptive dual attention network from spatial perspective, where the target pixel can adaptively aggregate high-level features by evaluating the confidence of effective information in different receptive fields. Compared with the single adjacency scheme, the adaptive dual attention mechanism makes the ability of target pixel to combine spatial information to reduce variation more stable. Finally, we designed a dispersion loss from the classifier's perspective. By supervising the learnable parameters of the final classification layer, the loss makes the category standard eigenvectors learned by the model more dispersed, which improves the category separability and reduces the rate of misclassification. Experiments on three common datasets show that our proposed method is superior to the comparison method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
sasa完成签到,获得积分10
2秒前
3秒前
3秒前
Paris发布了新的文献求助10
4秒前
IRONY发布了新的文献求助10
4秒前
4秒前
4秒前
亦辰发布了新的文献求助10
8秒前
EdinLiv发布了新的文献求助30
8秒前
overmind发布了新的文献求助10
9秒前
cece发布了新的文献求助10
10秒前
13秒前
西卡完成签到,获得积分10
14秒前
14秒前
EdinLiv完成签到,获得积分10
14秒前
15秒前
17秒前
小蘑菇应助阳光的豁采纳,获得10
18秒前
18秒前
小明同学发布了新的文献求助10
18秒前
JHcHuN发布了新的文献求助10
20秒前
21秒前
核桃发布了新的文献求助10
22秒前
bkagyin应助Re采纳,获得10
23秒前
23秒前
科研通AI5应助科学家采纳,获得10
23秒前
打打应助doujuanjuan采纳,获得10
24秒前
桂桂发布了新的文献求助10
25秒前
25秒前
26秒前
27秒前
29秒前
29秒前
在水一方应助adeno采纳,获得10
30秒前
ldd发布了新的文献求助10
30秒前
31秒前
31秒前
笑傲完成签到,获得积分10
32秒前
cece完成签到,获得积分10
34秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737566
求助须知:如何正确求助?哪些是违规求助? 3281296
关于积分的说明 10024292
捐赠科研通 2998016
什么是DOI,文献DOI怎么找? 1644966
邀请新用户注册赠送积分活动 782443
科研通“疑难数据库(出版商)”最低求助积分说明 749794