Adaptive Local Implicit Image Function for Arbitrary-Scale Super-Resolution

图像(数学) 像素 计算机科学 功能(生物学) 人工智能 缩放比例 算法 水准点(测量) 比例(比率) 编码器 代表(政治) 图像分辨率 计算机视觉 数学 几何学 物理 地理 法学 大地测量学 政治学 操作系统 政治 生物 进化生物学 量子力学
作者
Hongwei Li,Tao Dai,Yiming Li,Xueyi Zou,Shu‐Tao Xia
标识
DOI:10.1109/icip46576.2022.9897382
摘要

Image representation is critical for many visual tasks. Instead of representing images discretely with 2D arrays of pixels, a recent study, namely local implicit image function (LIIF), denotes images as a continuous function where pixel values are expansion by using the corresponding coordinates as inputs. Due to its continuous nature, LIIF can be adopted for arbitrary-scale image super-resolution tasks, resulting in a single effective and efficient model for various up-scaling factors. However, LIIF often suffers from structural distortions and ringing artifacts around edges, mostly because all pixels share the same model, thus ignoring the local properties of the image. In this paper, we propose a novel adaptive local image function (A-LIIF) to alleviate this problem. Specifically, our A-LIIF consists of two main components: an encoder and a expansion network. The former captures cross-scale image features, while the latter models the continuous up-scaling function by a weighted combination of multiple local implicit image functions. Accordingly, our A-LIIF can reconstruct the high-frequency textures and structures more accurately. Experiments on multiple benchmark datasets verify the effectiveness of our method. Our codes are available at https://github.com/LeeHW-THU/A-LIIF.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
迷人雪碧发布了新的文献求助10
刚刚
浮游应助科研通管家采纳,获得10
刚刚
蓝天应助科研通管家采纳,获得10
刚刚
赘婿应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
Luna_aaa应助科研通管家采纳,获得10
刚刚
刚刚
充电宝应助科研通管家采纳,获得10
刚刚
orixero应助科研通管家采纳,获得10
刚刚
小马甲应助科研通管家采纳,获得10
刚刚
蓝天应助科研通管家采纳,获得30
刚刚
Criminology34应助科研通管家采纳,获得10
刚刚
浮游应助科研通管家采纳,获得10
刚刚
桐桐应助科研通管家采纳,获得10
1秒前
NexusExplorer应助科研通管家采纳,获得30
1秒前
Criminology34应助科研通管家采纳,获得10
1秒前
爆米花应助科研通管家采纳,获得10
1秒前
Criminology34应助科研通管家采纳,获得10
1秒前
隐形曼青应助科研通管家采纳,获得10
1秒前
Luna_aaa应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
Ava应助科研通管家采纳,获得10
1秒前
852应助科研通管家采纳,获得10
1秒前
CipherSage应助科研通管家采纳,获得10
1秒前
NexusExplorer应助科研通管家采纳,获得10
1秒前
1秒前
SciGPT应助科研通管家采纳,获得10
1秒前
英俊的铭应助科研通管家采纳,获得10
1秒前
顾矜应助科研通管家采纳,获得10
2秒前
桐桐应助科研通管家采纳,获得10
2秒前
深情安青应助科研通管家采纳,获得10
2秒前
汉堡包应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
Luna_aaa应助科研通管家采纳,获得10
2秒前
asdfzxcv应助科研通管家采纳,获得10
2秒前
自觉的火龙果完成签到,获得积分10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
我是老大应助科研通管家采纳,获得10
2秒前
2秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5643395
求助须知:如何正确求助?哪些是违规求助? 4761165
关于积分的说明 15020721
捐赠科研通 4801748
什么是DOI,文献DOI怎么找? 2567022
邀请新用户注册赠送积分活动 1524822
关于科研通互助平台的介绍 1484386