SAT-GCN: Self-attention graph convolutional network-based 3D object detection for autonomous driving

点云 计算机科学 目标检测 图形 激光雷达 人工智能 模式识别(心理学) 特征提取 特征(语言学) 顶点(图论) 遥感 理论计算机科学 语言学 哲学 地质学
作者
Li Wang,Ziying Song,Xinyu Zhang,Chenfei Wang,Guoxin Zhang,Lei Zhu,Jun Li,Huaping Liu
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:259: 110080-110080 被引量:60
标识
DOI:10.1016/j.knosys.2022.110080
摘要

Accurate 3D object detection from point clouds is critical for autonomous vehicles. However, point cloud data collected by LiDAR sensors are inherently sparse, especially at long distances. In addition, most existing 3D object detectors extract local features and ignore interactions between features, producing weak semantic information that significantly limits detection performance. We propose a self-attention graph convolutional network (SAT-GCN), which utilizes a GCN and self-attention to enhance semantic representations by aggregating neighborhood information and focusing on vital relationships. SAT-GCN consists of three modules: vertex feature extraction (VFE), self-attention with dimension reduction (SADR), and far distance feature suppression (FDFS). VFE extracts neighboring relationships between features using GCN after encoding a raw point cloud. SADR performs further weight augmentation for crucial neighboring relationships through self-attention. FDFS suppresses meaningless edges formed by sparse point cloud distributions in remote areas and generates corresponding global features. Extensive experiments are conducted on the widely used KITTI and nuScenes 3D object detection benchmarks. The results demonstrate significant improvements in mainstream methods, PointPillars, SECOND, and PointRCNN, improving the mean of AP 3D by 4.88%, 5.02%, and 2.79% on KITTI test dataset. SAT-GCN can boost the detection accuracy of the point cloud, especially at medium and long distances. Furthermore, adding the SAT-GCN module has a limited impact on the real-time performance and model parameters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
余xinxin完成签到,获得积分10
1秒前
619805092完成签到,获得积分10
2秒前
筝zheng关注了科研通微信公众号
2秒前
呵呵哒发布了新的文献求助10
2秒前
3秒前
ZZ发布了新的文献求助30
3秒前
顾矜应助dicy1232003采纳,获得10
4秒前
尚可完成签到 ,获得积分10
4秒前
JamesPei应助阿橘采纳,获得10
5秒前
Smith.w发布了新的文献求助10
5秒前
杳鸢应助淼吉采纳,获得10
8秒前
呵呵哒完成签到,获得积分10
9秒前
hfhkjh完成签到,获得积分10
9秒前
13秒前
13秒前
Junrong应助机智采纳,获得10
14秒前
15秒前
16秒前
17秒前
17秒前
义气绿柳发布了新的文献求助10
17秒前
18秒前
dicy1232003发布了新的文献求助10
18秒前
Hello应助簪花带酒采纳,获得30
18秒前
筝zheng发布了新的文献求助10
19秒前
烟花应助科研通管家采纳,获得10
19秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
8R60d8应助科研通管家采纳,获得10
19秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
杳鸢应助科研通管家采纳,获得10
19秒前
不配.应助科研通管家采纳,获得10
19秒前
8R60d8应助科研通管家采纳,获得10
19秒前
19秒前
Ava应助科研通管家采纳,获得10
19秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
赘婿应助科研通管家采纳,获得10
20秒前
lucy完成签到 ,获得积分10
20秒前
20秒前
不配.应助科研通管家采纳,获得10
20秒前
Demo应助科研通管家采纳,获得10
20秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
The diagnosis of sex before birth using cells from the amniotic fluid (a preliminary report) 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3229292
求助须知:如何正确求助?哪些是违规求助? 2877036
关于积分的说明 8197538
捐赠科研通 2544353
什么是DOI,文献DOI怎么找? 1374356
科研通“疑难数据库(出版商)”最低求助积分说明 646935
邀请新用户注册赠送积分活动 621742