A lightweight convolutional neural network as an alternative to DIC to measure in-plane displacement fields

卷积神经网络 计算机科学 数字图像相关 人工智能 斑点图案 流离失所(心理学) 光流 图像处理 像素 计量学 计算机视觉 度量(数据仓库) 图像(数学) 光学 数据挖掘 心理治疗师 物理 心理学
作者
Seyfeddine Boukhtache,Kamel Abdelouahab,A. Bahou,François Berry,Benoît Blaysat,Michel Grédiac,Frédéric Sur
出处
期刊:Optics and Lasers in Engineering [Elsevier]
卷期号:161: 107367-107367 被引量:7
标识
DOI:10.1016/j.optlaseng.2022.107367
摘要

Convolutional Neural Networks (CNNs) are now commonly used in the computer vision community, in particular for optical flow estimation. Some attempts to use such tools to measure displacement and strain fields from pairs of reference/deformed speckle images (like Digital Image Correlation) have been recently reported in the literature. The aim of this work is twofold. The first one is to customize a state-of-the-art CNN dedicated to optical flow estimation to reach better performance when processing speckle images. This is mainly obtained by removing the deepest levels. The second one is to further simplify the CNN by reducing as much as possible the number of filters in the remaining levels while keeping equivalent metrological performance to the original version, in order to accelerate image processing on a power-efficient compact Graphics Processing Unit (GPU). Synthetic images deformed through a suitable displacement field are used to assess the metrological performance of the different versions of the CNN tested in this study. We focus the sub-pixel part of the displacement is considered for this first attempt, this part being much more challenging to determine than integer displacements obtained at the pixel scale. The latter can be found by cross-correlation or with a rough version of DIC. Real images are tested with the simplest version of the CNN and obtained results are compared with those provided by classic subset-based Digital Image Correlation. The two main conclusions are i- that the customization procedure improves the metrological performance of the original version, and that ii- the metrological performance of the ultimate simplified version of the CNN is globally equivalent to the one of the initial version despite the drastic simplification obtained at the end of the procedure. This performance lies between that of DIC used with first- and second-order subset shape functions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助1233采纳,获得10
刚刚
ardejiang发布了新的文献求助10
刚刚
liaowei0021发布了新的文献求助10
刚刚
SciGPT应助蜂蜜罐头采纳,获得10
1秒前
小壳儿完成签到 ,获得积分10
1秒前
高贵紫槐发布了新的文献求助10
1秒前
Pp完成签到,获得积分10
1秒前
大个应助小点点采纳,获得10
2秒前
赘婿应助林夕采纳,获得10
2秒前
3秒前
斯文败类应助呆呆要努力采纳,获得10
3秒前
4秒前
heouhou完成签到,获得积分20
5秒前
bkagyin应助谨慎青亦采纳,获得10
6秒前
6秒前
7秒前
科研小子发布了新的文献求助10
8秒前
24K纯帅完成签到,获得积分10
8秒前
9秒前
huntme发布了新的文献求助10
9秒前
9秒前
CodeCraft应助briliian采纳,获得10
9秒前
隐形曼青应助挤蘑菇采纳,获得10
10秒前
金属月亮完成签到,获得积分20
10秒前
CipherSage应助流霜采纳,获得10
12秒前
8R60d8应助无趣养乐多采纳,获得10
12秒前
yanmengzhen完成签到 ,获得积分10
14秒前
aaaaa发布了新的文献求助10
14秒前
无花果应助隐形的雨寒采纳,获得10
14秒前
上好佳发布了新的文献求助10
14秒前
14秒前
15秒前
sochiyuen发布了新的文献求助10
15秒前
Yolanda完成签到 ,获得积分10
15秒前
15秒前
sober完成签到 ,获得积分10
16秒前
Cherry完成签到,获得积分10
16秒前
16秒前
huntme完成签到,获得积分10
17秒前
医者修心发布了新的文献求助10
17秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
Die Gottesanbeterin: Mantis religiosa: 656 500
Communist propaganda: a fact book, 1957-1958 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3170569
求助须知:如何正确求助?哪些是违规求助? 2821667
关于积分的说明 7935825
捐赠科研通 2482104
什么是DOI,文献DOI怎么找? 1322285
科研通“疑难数据库(出版商)”最低求助积分说明 633607
版权声明 602608