亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A lightweight convolutional neural network as an alternative to DIC to measure in-plane displacement fields

卷积神经网络 计算机科学 数字图像相关 人工智能 斑点图案 流离失所(心理学) 光流 图像处理 像素 计量学 计算机视觉 度量(数据仓库) 图像(数学) 光学 数据挖掘 物理 心理治疗师 心理学
作者
Seyfeddine Boukhtache,Kamel Abdelouahab,A. Bahou,François Berry,Benoît Blaysat,Michel Grédiac,Frédéric Sur
出处
期刊:Optics and Lasers in Engineering [Elsevier]
卷期号:161: 107367-107367 被引量:7
标识
DOI:10.1016/j.optlaseng.2022.107367
摘要

Convolutional Neural Networks (CNNs) are now commonly used in the computer vision community, in particular for optical flow estimation. Some attempts to use such tools to measure displacement and strain fields from pairs of reference/deformed speckle images (like Digital Image Correlation) have been recently reported in the literature. The aim of this work is twofold. The first one is to customize a state-of-the-art CNN dedicated to optical flow estimation to reach better performance when processing speckle images. This is mainly obtained by removing the deepest levels. The second one is to further simplify the CNN by reducing as much as possible the number of filters in the remaining levels while keeping equivalent metrological performance to the original version, in order to accelerate image processing on a power-efficient compact Graphics Processing Unit (GPU). Synthetic images deformed through a suitable displacement field are used to assess the metrological performance of the different versions of the CNN tested in this study. We focus the sub-pixel part of the displacement is considered for this first attempt, this part being much more challenging to determine than integer displacements obtained at the pixel scale. The latter can be found by cross-correlation or with a rough version of DIC. Real images are tested with the simplest version of the CNN and obtained results are compared with those provided by classic subset-based Digital Image Correlation. The two main conclusions are i- that the customization procedure improves the metrological performance of the original version, and that ii- the metrological performance of the ultimate simplified version of the CNN is globally equivalent to the one of the initial version despite the drastic simplification obtained at the end of the procedure. This performance lies between that of DIC used with first- and second-order subset shape functions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
温暖水云发布了新的文献求助10
刚刚
852应助壹玖一陆采纳,获得10
6秒前
wanna发布了新的文献求助10
8秒前
8秒前
完美谷秋完成签到 ,获得积分10
9秒前
突突leolo发布了新的文献求助10
12秒前
HOXXXiii完成签到,获得积分10
20秒前
23秒前
隐形曼青应助时间尘埃采纳,获得10
24秒前
28秒前
l900发布了新的文献求助20
29秒前
YifanWang应助科研通管家采纳,获得10
30秒前
浮游应助科研通管家采纳,获得10
30秒前
Lucas应助科研通管家采纳,获得10
30秒前
YifanWang应助科研通管家采纳,获得10
30秒前
浮游应助科研通管家采纳,获得10
30秒前
浮游应助科研通管家采纳,获得10
30秒前
可可西里发布了新的文献求助10
31秒前
44秒前
zwenng完成签到,获得积分10
45秒前
50秒前
50秒前
21145077发布了新的文献求助10
55秒前
55秒前
55秒前
fsy123完成签到,获得积分10
57秒前
58秒前
59秒前
安详砖家发布了新的文献求助10
59秒前
鳄鱼不做饿梦完成签到,获得积分10
1分钟前
慈祥的蛋挞完成签到 ,获得积分10
1分钟前
1分钟前
网上飞完成签到,获得积分10
1分钟前
姜忆霜完成签到 ,获得积分10
1分钟前
1分钟前
安详砖家完成签到,获得积分10
1分钟前
温暖水云发布了新的文献求助10
1分钟前
若雨凌风完成签到,获得积分0
1分钟前
1分钟前
爆米花应助Gaopkid采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 1000
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5493810
求助须知:如何正确求助?哪些是违规求助? 4591808
关于积分的说明 14434715
捐赠科研通 4524218
什么是DOI,文献DOI怎么找? 2478734
邀请新用户注册赠送积分活动 1463717
关于科研通互助平台的介绍 1436490