亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A lightweight convolutional neural network as an alternative to DIC to measure in-plane displacement fields

卷积神经网络 计算机科学 数字图像相关 人工智能 斑点图案 流离失所(心理学) 光流 图像处理 像素 计量学 计算机视觉 度量(数据仓库) 图像(数学) 光学 数据挖掘 物理 心理治疗师 心理学
作者
Seyfeddine Boukhtache,Kamel Abdelouahab,A. Bahou,François Berry,Benoît Blaysat,Michel Grédiac,Frédéric Sur
出处
期刊:Optics and Lasers in Engineering [Elsevier]
卷期号:161: 107367-107367 被引量:7
标识
DOI:10.1016/j.optlaseng.2022.107367
摘要

Convolutional Neural Networks (CNNs) are now commonly used in the computer vision community, in particular for optical flow estimation. Some attempts to use such tools to measure displacement and strain fields from pairs of reference/deformed speckle images (like Digital Image Correlation) have been recently reported in the literature. The aim of this work is twofold. The first one is to customize a state-of-the-art CNN dedicated to optical flow estimation to reach better performance when processing speckle images. This is mainly obtained by removing the deepest levels. The second one is to further simplify the CNN by reducing as much as possible the number of filters in the remaining levels while keeping equivalent metrological performance to the original version, in order to accelerate image processing on a power-efficient compact Graphics Processing Unit (GPU). Synthetic images deformed through a suitable displacement field are used to assess the metrological performance of the different versions of the CNN tested in this study. We focus the sub-pixel part of the displacement is considered for this first attempt, this part being much more challenging to determine than integer displacements obtained at the pixel scale. The latter can be found by cross-correlation or with a rough version of DIC. Real images are tested with the simplest version of the CNN and obtained results are compared with those provided by classic subset-based Digital Image Correlation. The two main conclusions are i- that the customization procedure improves the metrological performance of the original version, and that ii- the metrological performance of the ultimate simplified version of the CNN is globally equivalent to the one of the initial version despite the drastic simplification obtained at the end of the procedure. This performance lies between that of DIC used with first- and second-order subset shape functions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
thl发布了新的文献求助10
7秒前
14秒前
无花果应助congfeng采纳,获得10
30秒前
suliuyin应助眯眯眼的山柳采纳,获得10
32秒前
852应助眯眯眼的山柳采纳,获得10
32秒前
FashionBoy应助thl采纳,获得10
59秒前
1分钟前
英姑应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
科研通AI2S应助另一种蓝色采纳,获得10
1分钟前
1分钟前
thl发布了新的文献求助10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
CRUSADER完成签到,获得积分10
2分钟前
2分钟前
attention完成签到,获得积分10
2分钟前
cat发布了新的文献求助30
2分钟前
2分钟前
congfeng发布了新的文献求助10
2分钟前
congfeng完成签到,获得积分20
2分钟前
2分钟前
李健的小迷弟应助thl采纳,获得10
2分钟前
KUIWU完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
Ih6uaZ完成签到 ,获得积分10
2分钟前
kki发布了新的文献求助10
2分钟前
3分钟前
3分钟前
3分钟前
kki完成签到,获得积分10
3分钟前
3分钟前
Marshall发布了新的文献求助10
3分钟前
thl发布了新的文献求助10
3分钟前
3分钟前
4分钟前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5746962
求助须知:如何正确求助?哪些是违规求助? 5441026
关于积分的说明 15356071
捐赠科研通 4886977
什么是DOI,文献DOI怎么找? 2627509
邀请新用户注册赠送积分活动 1575959
关于科研通互助平台的介绍 1532759