亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A lightweight convolutional neural network as an alternative to DIC to measure in-plane displacement fields

卷积神经网络 计算机科学 数字图像相关 人工智能 斑点图案 流离失所(心理学) 光流 图像处理 像素 计量学 计算机视觉 度量(数据仓库) 图像(数学) 光学 数据挖掘 物理 心理治疗师 心理学
作者
Seyfeddine Boukhtache,Kamel Abdelouahab,A. Bahou,François Berry,Benoît Blaysat,Michel Grédiac,Frédéric Sur
出处
期刊:Optics and Lasers in Engineering [Elsevier]
卷期号:161: 107367-107367 被引量:7
标识
DOI:10.1016/j.optlaseng.2022.107367
摘要

Convolutional Neural Networks (CNNs) are now commonly used in the computer vision community, in particular for optical flow estimation. Some attempts to use such tools to measure displacement and strain fields from pairs of reference/deformed speckle images (like Digital Image Correlation) have been recently reported in the literature. The aim of this work is twofold. The first one is to customize a state-of-the-art CNN dedicated to optical flow estimation to reach better performance when processing speckle images. This is mainly obtained by removing the deepest levels. The second one is to further simplify the CNN by reducing as much as possible the number of filters in the remaining levels while keeping equivalent metrological performance to the original version, in order to accelerate image processing on a power-efficient compact Graphics Processing Unit (GPU). Synthetic images deformed through a suitable displacement field are used to assess the metrological performance of the different versions of the CNN tested in this study. We focus the sub-pixel part of the displacement is considered for this first attempt, this part being much more challenging to determine than integer displacements obtained at the pixel scale. The latter can be found by cross-correlation or with a rough version of DIC. Real images are tested with the simplest version of the CNN and obtained results are compared with those provided by classic subset-based Digital Image Correlation. The two main conclusions are i- that the customization procedure improves the metrological performance of the original version, and that ii- the metrological performance of the ultimate simplified version of the CNN is globally equivalent to the one of the initial version despite the drastic simplification obtained at the end of the procedure. This performance lies between that of DIC used with first- and second-order subset shape functions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
木子完成签到 ,获得积分10
6秒前
6秒前
小蘑菇应助凉逗听采纳,获得10
9秒前
Tristan完成签到 ,获得积分10
9秒前
11112321321完成签到 ,获得积分10
11秒前
ppjkq1发布了新的文献求助10
11秒前
韩国辉完成签到 ,获得积分10
13秒前
asdfzxcv完成签到 ,获得积分10
18秒前
田様应助ppjkq1采纳,获得10
22秒前
25秒前
星辰大海应助灵巧慕青采纳,获得10
26秒前
凉逗听发布了新的文献求助10
30秒前
光亮静槐完成签到 ,获得积分10
31秒前
xiangqing完成签到 ,获得积分10
45秒前
Sunziy完成签到,获得积分10
47秒前
53秒前
56秒前
Lionnn完成签到 ,获得积分10
56秒前
57秒前
盛夏如花发布了新的文献求助10
58秒前
灵巧慕青发布了新的文献求助10
1分钟前
Getlogger发布了新的文献求助10
1分钟前
1分钟前
Irene发布了新的文献求助10
1分钟前
凉逗听完成签到,获得积分10
1分钟前
Lucas应助明亮紫易采纳,获得10
1分钟前
善学以致用应助Irene采纳,获得10
1分钟前
汉堡包应助Getlogger采纳,获得10
1分钟前
Panther完成签到,获得积分10
1分钟前
mr_wang完成签到,获得积分10
1分钟前
1分钟前
灵巧慕青完成签到,获得积分10
1分钟前
1分钟前
小蘑菇应助科研通管家采纳,获得10
1分钟前
乐乐应助科研通管家采纳,获得10
1分钟前
隐形曼青应助科研通管家采纳,获得10
1分钟前
为什么这样子完成签到,获得积分10
1分钟前
爱听歌的明雪完成签到,获得积分20
1分钟前
科研通AI6应助纸鹤采纳,获得10
1分钟前
可爱的函函应助小花生采纳,获得10
1分钟前
高分求助中
From Victimization to Aggression 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5644502
求助须知:如何正确求助?哪些是违规求助? 4764327
关于积分的说明 15025209
捐赠科研通 4802884
什么是DOI,文献DOI怎么找? 2567685
邀请新用户注册赠送积分活动 1525344
关于科研通互助平台的介绍 1484802