A lightweight convolutional neural network as an alternative to DIC to measure in-plane displacement fields

卷积神经网络 计算机科学 数字图像相关 人工智能 斑点图案 流离失所(心理学) 光流 图像处理 像素 计量学 计算机视觉 度量(数据仓库) 图像(数学) 光学 数据挖掘 物理 心理治疗师 心理学
作者
Seyfeddine Boukhtache,Kamel Abdelouahab,A. Bahou,François Berry,Benoît Blaysat,Michel Grédiac,Frédéric Sur
出处
期刊:Optics and Lasers in Engineering [Elsevier BV]
卷期号:161: 107367-107367 被引量:7
标识
DOI:10.1016/j.optlaseng.2022.107367
摘要

Convolutional Neural Networks (CNNs) are now commonly used in the computer vision community, in particular for optical flow estimation. Some attempts to use such tools to measure displacement and strain fields from pairs of reference/deformed speckle images (like Digital Image Correlation) have been recently reported in the literature. The aim of this work is twofold. The first one is to customize a state-of-the-art CNN dedicated to optical flow estimation to reach better performance when processing speckle images. This is mainly obtained by removing the deepest levels. The second one is to further simplify the CNN by reducing as much as possible the number of filters in the remaining levels while keeping equivalent metrological performance to the original version, in order to accelerate image processing on a power-efficient compact Graphics Processing Unit (GPU). Synthetic images deformed through a suitable displacement field are used to assess the metrological performance of the different versions of the CNN tested in this study. We focus the sub-pixel part of the displacement is considered for this first attempt, this part being much more challenging to determine than integer displacements obtained at the pixel scale. The latter can be found by cross-correlation or with a rough version of DIC. Real images are tested with the simplest version of the CNN and obtained results are compared with those provided by classic subset-based Digital Image Correlation. The two main conclusions are i- that the customization procedure improves the metrological performance of the original version, and that ii- the metrological performance of the ultimate simplified version of the CNN is globally equivalent to the one of the initial version despite the drastic simplification obtained at the end of the procedure. This performance lies between that of DIC used with first- and second-order subset shape functions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
李老头完成签到,获得积分10
2秒前
乐乐应助Edward采纳,获得10
2秒前
夜王完成签到,获得积分20
3秒前
3秒前
可靠觅珍应助Tsui采纳,获得40
3秒前
嘿嘿完成签到,获得积分10
3秒前
3秒前
天天快乐应助木子采纳,获得20
4秒前
乐乐应助幸运草采纳,获得10
5秒前
夜王发布了新的文献求助10
6秒前
7秒前
嗯哼发布了新的文献求助10
8秒前
星辰大海应助Bazinga采纳,获得10
8秒前
独特冰安发布了新的文献求助10
8秒前
Luu发布了新的文献求助10
9秒前
五五完成签到 ,获得积分10
10秒前
天天快乐应助科研通管家采纳,获得10
11秒前
yar应助科研通管家采纳,获得10
11秒前
烟花应助科研通管家采纳,获得10
11秒前
yar应助科研通管家采纳,获得10
11秒前
科目三应助科研通管家采纳,获得10
11秒前
酷波er应助科研通管家采纳,获得10
11秒前
打打应助科研通管家采纳,获得10
11秒前
乐乐应助科研通管家采纳,获得10
11秒前
星辰大海应助科研通管家采纳,获得10
12秒前
独特冰安发布了新的文献求助10
12秒前
14秒前
14秒前
14秒前
顾矜应助科研眼镜蛇采纳,获得10
14秒前
深情安青应助嗯哼采纳,获得10
16秒前
18秒前
18秒前
yukiy完成签到,获得积分10
19秒前
柒玥完成签到,获得积分10
19秒前
19秒前
Akim应助咕咕采纳,获得10
20秒前
hello完成签到 ,获得积分10
20秒前
落后的冬寒完成签到,获得积分10
21秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975426
求助须知:如何正确求助?哪些是违规求助? 3519848
关于积分的说明 11199831
捐赠科研通 3256122
什么是DOI,文献DOI怎么找? 1798124
邀请新用户注册赠送积分活动 877386
科研通“疑难数据库(出版商)”最低求助积分说明 806305