生物炭
过硫酸盐
化学
激进的
热解
催化作用
光化学
无机化学
有机化学
作者
Yao Tang,Jibo Dou,Zhijiang Lu,Jianming Xu,Yan He
标识
DOI:10.1016/j.envpol.2022.120669
摘要
The sluggish Fe3+/Fe2+ cycle was the rate-limiting step in the Fenton-like reaction, and metal-free carbonaceous materials are considered as emerging alternatives to solve this problem. However, the effect of carbon material properties on the distribution of reactive species remains poorly understood. This study investigated the possibility and mechanism of using biochar to accelerate the Fe3+/Fe2+ cycle to overcome the low efficiency of Fe3+/persulfate (PS) catalytic oxidation of phenanthrene. More importantly, the contribution of reactive species in the reaction systems with the variation of biochar pyrolysis temperatures was quantitatively studied. The results showed that medium-temperature derived biochar (BC500) had the greatest ability to enhance the Fenton-like system compared to the low- and high-temperature (BC350/700), and the first-order rate constant achieved 5.2 and 35.7-fold increase against the biochar/PS and Fe3+/PS systems, respectively. Using electrochemical evidence, sulfoxide probe tests, and steady-state concentration calculations, radicals yields were found to rise and then reduce with decreasing pyrolysis temperature, while the nonradical contribution of Fe(IV) increased to 56.3%. Electron paramagnetic resonance, Boehm titration, and Raman spectroscopy unraveled that the enhanced effect of biochar resulted from itself persistent free radicals, phenolic-OH, and edge defects, which enabled electron transfer between Fe3+ and biochar. Fe2+ was thus continuously generated and effectively activated the PS. This work enables a better understanding of the Fe3+-mediated Fenton-like reaction in the presence of biochar and provides a sustainable green strategy for Fenton chemistry with potential applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI