Surface and interfacial conduction using gadolinium-doped ceria electrolyte for advanced low temperature 400–500 °C fuel cell

材料科学 热传导 电解质 离子电导率 电导率 晶界 陶瓷 异质结 化学工程 表面电导率 复合材料 化学 光电子学 微观结构 物理化学 电极 工程类
作者
M.A.K. Yousaf Shah,Yuzheng Lu,Naveed Mushtaq,Sajid Rauf,Muhammad Yousaf,Bin Zhu
出处
期刊:Electrochimica Acta [Elsevier]
卷期号:439: 141592-141592 被引量:5
标识
DOI:10.1016/j.electacta.2022.141592
摘要

Lowering the operating temperature with enhanced performance and better efficiency is considered a universal R&D bottleneck for the progress of low-temperature (<520 °C) solid oxide fuel cells (SOFCs) or ceramic fuel cells (CFCs) to avail the opportunities of commercialization. Bulk doping is the primary ionic conduction mechanism in traditional electrolyte materials for CFC, mainly influenced by the operating temperature and bulk density, thus resulting in high operational temperature. Herein, we proposed a new mechanism for tunning Ce0.9Gd0.1O2-δ (GDC) electrolyte based on a nanocrystalline structure from surface or grain boundary conduction to interfacial conduction by introducing the carbonates to form the heterostructure, exhibiting an extremely high ionic conductivity of (0.2 S·cm−1) at 520 °C. At first, we noticed that the grain boundary conduction of GDC is causing to enhance the charge carrier leading to establishing surface conduction. We further modify the GDC with carbonates to form the core–shell heterostructure to boost ionic conduction. The constructed cell with core–shell heterostructure has exhibited a remarkable performance of 968 mW/cm2. In contrast, 578 mW/cm2 was achieved from the surface conduction of GDC, and at the same time, we observed immensely low grain-boundary resistance from the impedance analysis. The mechanism of core–shell structure formation has been discussed in detail, and the ionic conduction at the surface and interfaces can be considered the dominant conduction mechanism for GDC electrolytes. This work has explored a new approach by tuning the ionic property from surface to interface to develop advanced CFCs, significantly improving the state-of-art GDC electrolyte via enhancing surface/interface conductions. This may be developed as a more functional approach for advanced energy materials, e.g., battery and electrolysis devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
小粒橙完成签到 ,获得积分10
5秒前
kyt发布了新的文献求助10
8秒前
duxh123完成签到 ,获得积分10
11秒前
wanglu完成签到,获得积分10
16秒前
17秒前
yff发布了新的文献求助10
23秒前
25秒前
高歌完成签到 ,获得积分10
26秒前
30秒前
38秒前
缥缈的葵完成签到 ,获得积分10
39秒前
basket完成签到 ,获得积分10
43秒前
卢健辉完成签到,获得积分10
47秒前
荔枝完成签到 ,获得积分10
48秒前
49秒前
Agnesma完成签到,获得积分10
51秒前
晓晗完成签到 ,获得积分10
52秒前
53秒前
kyt发布了新的文献求助10
53秒前
沉静的万天完成签到 ,获得积分10
58秒前
cis2014完成签到,获得积分10
59秒前
无私绿兰完成签到 ,获得积分10
1分钟前
yff发布了新的文献求助10
1分钟前
Phoenix完成签到 ,获得积分10
1分钟前
Orange应助kyt采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
Plummy完成签到 ,获得积分10
1分钟前
无人如之发布了新的文献求助10
1分钟前
想飞的熊完成签到 ,获得积分10
1分钟前
加油完成签到 ,获得积分10
1分钟前
yff完成签到,获得积分20
1分钟前
大模型应助无人如之采纳,获得10
1分钟前
清新的音响完成签到 ,获得积分10
1分钟前
spring完成签到 ,获得积分10
1分钟前
1分钟前
dajiejie完成签到 ,获得积分10
1分钟前
高分求助中
Evolution 2024
Impact of Mitophagy-Related Genes on the Diagnosis and Development of Esophageal Squamous Cell Carcinoma via Single-Cell RNA-seq Analysis and Machine Learning Algorithms 2000
How to Create Beauty: De Lairesse on the Theory and Practice of Making Art 1000
Gerard de Lairesse : an artist between stage and studio 670
大平正芳: 「戦後保守」とは何か 550
Contributo alla conoscenza del bifenile e dei suoi derivati. Nota XV. Passaggio dal sistema bifenilico a quello fluorenico 500
Angio-based 3DStent for evaluation of stent expansion 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 2994112
求助须知:如何正确求助?哪些是违规求助? 2654507
关于积分的说明 7180415
捐赠科研通 2289845
什么是DOI,文献DOI怎么找? 1213765
版权声明 592720
科研通“疑难数据库(出版商)”最低求助积分说明 592419