Semantic Enhanced Video Captioning with Multi-feature Fusion

隐藏字幕 计算机科学 编码器 人工智能 杠杆(统计) 自然语言处理 语义特征 冗余(工程) 特征(语言学) 语义鸿沟 情报检索 图像(数学) 图像检索 操作系统 语言学 哲学
作者
Tian-Zi Niu,Shan-Shan Dong,Zhen-Duo Chen,Xin Luo,Shanqing Guo,Zi Huang,Xin-Shun Xu
出处
期刊:ACM Transactions on Multimedia Computing, Communications, and Applications [Association for Computing Machinery]
卷期号:19 (6): 1-21 被引量:3
标识
DOI:10.1145/3588572
摘要

Video captioning aims to automatically describe a video clip with informative sentences. At present, deep learning-based models have become the mainstream for this task and achieved competitive results on public datasets. Usually, these methods leverage different types of features to generate sentences, e.g., semantic information, 2D or 3D features. However, some methods only treat semantic information as a complement of visual representations and cannot fully exploit it; some of them ignore the relationship between different types of features. In addition, most of them select multiple frames of a video with an equally spaced sampling scheme, resulting in much redundant information. To address these issues, we present a novel video-captioning framework, Semantic Enhanced video captioning with Multi-feature Fusion, SEMF for short. It optimizes the use of different types of features from three aspects. First, a semantic encoder is designed to enhance meaningful semantic features through a semantic dictionary to boost performance. Second, a discrete selection module pays attention to important features and obtains different contexts at different steps to reduce feature redundancy. Finally, a multi-feature fusion module uses a novel relation-aware attention mechanism to separate the common and complementary components of different features to provide more effective visual features for the next step. Moreover, the entire framework can be trained in an end-to-end manner. Extensive experiments are conducted on Microsoft Research Video Description Corpus (MSVD) and MSR-Video to Text (MSR-VTT) datasets. The results demonstrate that SEMF is able to achieve state-of-the-art results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Hulda发布了新的文献求助10
1秒前
2秒前
传奇3应助飘着的鬼采纳,获得10
3秒前
Lucas应助帕克采纳,获得10
3秒前
4秒前
思源应助社畜一生采纳,获得10
5秒前
欣欣发布了新的文献求助10
6秒前
Sssssss完成签到,获得积分10
6秒前
欣慰外绣关注了科研通微信公众号
6秒前
111111完成签到,获得积分20
6秒前
陈小桥完成签到,获得积分10
8秒前
8秒前
JACN发布了新的文献求助30
8秒前
juziyaya应助yujiuwu采纳,获得10
11秒前
Doki发布了新的文献求助10
12秒前
12秒前
冷傲小刀刀关注了科研通微信公众号
12秒前
more关注了科研通微信公众号
13秒前
13秒前
凉水发布了新的文献求助10
14秒前
15秒前
哭泣的芷蝶完成签到,获得积分10
16秒前
迅速斑马完成签到,获得积分10
16秒前
16秒前
18秒前
郭佳怡完成签到 ,获得积分10
18秒前
海盗船长完成签到,获得积分10
18秒前
天天快乐应助TAOS采纳,获得10
18秒前
19秒前
sam应助111111采纳,获得10
19秒前
林星应助JACN采纳,获得20
21秒前
21秒前
xinyi发布了新的文献求助10
22秒前
南北关注了科研通微信公众号
22秒前
阿腾发布了新的文献求助10
23秒前
23秒前
24秒前
zhuo发布了新的文献求助10
24秒前
24秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140765
求助须知:如何正确求助?哪些是违规求助? 2791647
关于积分的说明 7799859
捐赠科研通 2447961
什么是DOI,文献DOI怎么找? 1302261
科研通“疑难数据库(出版商)”最低求助积分说明 626487
版权声明 601194