已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Soil information on a regional scale: Two machine learning based approaches for predicting saturated hydraulic conductivity

Pedotransfer函数 导水率 土壤图 数字土壤制图 土壤科学 环境科学 土壤质地 空间变异性 水文学(农业) 计算机科学 土壤水分 地质学 数学 岩土工程 统计
作者
Hanna Zeitfogel,Moritz Feigl,Karsten Schulz
出处
期刊:Geoderma [Elsevier]
卷期号:433: 116418-116418 被引量:3
标识
DOI:10.1016/j.geoderma.2023.116418
摘要

Saturated hydraulic conductivity (Ksat) and other soil (hydraulic) properties are fundamental for applications that depend on modeling hydrological processes, such as the quantification of future groundwater recharge rates. Yet, for most areas in the world, local soil information is lacking. Additionally, access to local soil surveys is often restricted or costly. Available global and regional digital soil mapping (DSM) products differ in scale and degree of data aggregation, as well as in spatial coverage. Ksat – and soil properties in general – are also characterized by a high spatial variability at all scales. Most often, there is no single data product available that covers the whole study area and still displays the variability of local soil observations. Thus, it is often a challenge to combine and predict soil data from different sources and resolutions while preserving the characteristically high spatial variability of soil properties. This study develops and compares two approaches for producing spatially distributed Ksat maps. First, an indirect approach based on two machine learning (ML) models – eXtreme Gradient Boosting (XGBoost) and feed-forward neural network (FNN) – that are trained with available local soil data sources and environmental raster datasets to predict the soil parameters sand, silt, clay, and organic matter content. Ksat is then determined by applying existing pedotransfer-functions (PTFs) on these regionalized soil parameters. Second, a direct approach in which ML models are directly trained with available soil hydraulic datasets to predict Ksat. Both approaches are applied to predict Ksat for Austria. While the resulting soil property maps of the indirect approach are able to largely reproduce the original data variability, the prediction of Ksat includes high levels of uncertainties and the predicted vertical distribution of Ksat is not plausible. The spatial distribution of Ksat in the direct approach resembles available global Ksat maps. In the existing global Ksat maps as well as in the results of the direct approach the small-scale variability of Ksat is reduced. In both approaches XGBoost outperforms FNN. The derived soil property maps help to reduce current gaps in soil data availability for Austria, but also highlight the need for additional Ksat field data acquisition.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
苗条元霜发布了新的文献求助10
刚刚
1秒前
FSDF发布了新的文献求助10
1秒前
2秒前
一一完成签到,获得积分10
3秒前
4秒前
4秒前
siliy发布了新的文献求助10
4秒前
whoknowsname完成签到,获得积分10
5秒前
顺顺顺顺发布了新的文献求助10
5秒前
小白果果发布了新的文献求助10
6秒前
7秒前
明晨发布了新的文献求助20
7秒前
cm完成签到,获得积分10
8秒前
blackddl完成签到,获得积分10
8秒前
李健应助HuangJiajia_FZU采纳,获得10
9秒前
CipherSage应助xun采纳,获得10
9秒前
panpan发布了新的文献求助10
10秒前
2233完成签到 ,获得积分10
12秒前
yuxi2025完成签到 ,获得积分10
12秒前
天真幻珊完成签到 ,获得积分10
13秒前
14秒前
刻苦的白曼完成签到 ,获得积分10
14秒前
15秒前
16秒前
panpan完成签到,获得积分10
18秒前
19秒前
啊宋发布了新的文献求助10
20秒前
脑洞疼应助FSDF采纳,获得10
21秒前
明亮的初阳完成签到,获得积分10
22秒前
大模型应助堡主采纳,获得10
22秒前
katha发布了新的文献求助10
24秒前
26秒前
JAYGOD发布了新的文献求助10
26秒前
BA1完成签到 ,获得积分10
27秒前
zinan发布了新的文献求助10
29秒前
29秒前
自然的夏寒完成签到,获得积分10
30秒前
科研女仆完成签到 ,获得积分10
32秒前
34秒前
高分求助中
Learning and Memory: A Comprehensive Reference 2000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1541
The Jasper Project 800
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Binary Alloy Phase Diagrams, 2nd Edition 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5502464
求助须知:如何正确求助?哪些是违规求助? 4598341
关于积分的说明 14463804
捐赠科研通 4531872
什么是DOI,文献DOI怎么找? 2483718
邀请新用户注册赠送积分活动 1466934
关于科研通互助平台的介绍 1439567