Soil information on a regional scale: Two machine learning based approaches for predicting saturated hydraulic conductivity

Pedotransfer函数 导水率 土壤图 数字土壤制图 土壤科学 环境科学 土壤质地 空间变异性 水文学(农业) 计算机科学 土壤水分 地质学 数学 岩土工程 统计
作者
Hanna Zeitfogel,Moritz Feigl,Karsten Schulz
出处
期刊:Geoderma [Elsevier]
卷期号:433: 116418-116418 被引量:3
标识
DOI:10.1016/j.geoderma.2023.116418
摘要

Saturated hydraulic conductivity (Ksat) and other soil (hydraulic) properties are fundamental for applications that depend on modeling hydrological processes, such as the quantification of future groundwater recharge rates. Yet, for most areas in the world, local soil information is lacking. Additionally, access to local soil surveys is often restricted or costly. Available global and regional digital soil mapping (DSM) products differ in scale and degree of data aggregation, as well as in spatial coverage. Ksat – and soil properties in general – are also characterized by a high spatial variability at all scales. Most often, there is no single data product available that covers the whole study area and still displays the variability of local soil observations. Thus, it is often a challenge to combine and predict soil data from different sources and resolutions while preserving the characteristically high spatial variability of soil properties. This study develops and compares two approaches for producing spatially distributed Ksat maps. First, an indirect approach based on two machine learning (ML) models – eXtreme Gradient Boosting (XGBoost) and feed-forward neural network (FNN) – that are trained with available local soil data sources and environmental raster datasets to predict the soil parameters sand, silt, clay, and organic matter content. Ksat is then determined by applying existing pedotransfer-functions (PTFs) on these regionalized soil parameters. Second, a direct approach in which ML models are directly trained with available soil hydraulic datasets to predict Ksat. Both approaches are applied to predict Ksat for Austria. While the resulting soil property maps of the indirect approach are able to largely reproduce the original data variability, the prediction of Ksat includes high levels of uncertainties and the predicted vertical distribution of Ksat is not plausible. The spatial distribution of Ksat in the direct approach resembles available global Ksat maps. In the existing global Ksat maps as well as in the results of the direct approach the small-scale variability of Ksat is reduced. In both approaches XGBoost outperforms FNN. The derived soil property maps help to reduce current gaps in soil data availability for Austria, but also highlight the need for additional Ksat field data acquisition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
聚乙二醇发布了新的文献求助10
2秒前
欣欣发布了新的文献求助10
3秒前
英俊的铭应助鲜艳的芝麻采纳,获得10
3秒前
欣慰听南发布了新的文献求助10
3秒前
zcg发布了新的文献求助10
4秒前
xlong应助poyo采纳,获得10
5秒前
5秒前
5秒前
调研昵称发布了新的文献求助10
5秒前
斯文败类应助568242542采纳,获得10
7秒前
汉堡包应助科研通管家采纳,获得10
7秒前
烟花应助科研通管家采纳,获得10
7秒前
7秒前
领导范儿应助科研通管家采纳,获得10
7秒前
7秒前
李爱国应助科研通管家采纳,获得10
7秒前
CipherSage应助科研通管家采纳,获得10
8秒前
FashionBoy应助科研通管家采纳,获得10
8秒前
赘婿应助科研通管家采纳,获得10
8秒前
在水一方应助科研通管家采纳,获得10
8秒前
杳鸢应助科研通管家采纳,获得30
8秒前
烟花应助科研通管家采纳,获得10
8秒前
8秒前
9秒前
勤奋曼雁发布了新的文献求助10
9秒前
所所应助蕊蕊采纳,获得10
9秒前
CodeCraft应助toxin37采纳,获得10
9秒前
涉几尘发布了新的文献求助10
9秒前
XKYRIE完成签到,获得积分10
10秒前
肥鲶鱼发布了新的文献求助10
11秒前
11秒前
ENIX完成签到,获得积分10
11秒前
打打应助普契尼采纳,获得10
11秒前
大段儿发布了新的文献求助10
12秒前
Murphy发布了新的文献求助10
12秒前
wy发布了新的文献求助10
12秒前
眼睛大的问儿完成签到,获得积分10
13秒前
14秒前
lxl发布了新的文献求助10
14秒前
16秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3263069
求助须知:如何正确求助?哪些是违规求助? 2903744
关于积分的说明 8326639
捐赠科研通 2573710
什么是DOI,文献DOI怎么找? 1398451
科研通“疑难数据库(出版商)”最低求助积分说明 654203
邀请新用户注册赠送积分活动 632739