Matching patients to clinical trials with large language models

排名(信息检索) 匹配(统计) 计算机科学 临床试验 召回 语言模型 人工智能 情报检索 自然语言处理 机器学习 医学 医学物理学 心理学 病理 认知心理学
作者
Qiao Jin,Zifeng Wang,Charalampos S. Floudas,Fangyuan Chen,Changlin Gong,Dara Bracken-Clarke,Elisabetta Xue,Yifan Yang,Jimeng Sun,Zhiyong Lu
出处
期刊:Nature Communications [Springer Nature]
卷期号:15 (1) 被引量:9
标识
DOI:10.1038/s41467-024-53081-z
摘要

Abstract Patient recruitment is challenging for clinical trials. We introduce TrialGPT, an end-to-end framework for zero-shot patient-to-trial matching with large language models. TrialGPT comprises three modules: it first performs large-scale filtering to retrieve candidate trials (TrialGPT-Retrieval); then predicts criterion-level patient eligibility (TrialGPT-Matching); and finally generates trial-level scores (TrialGPT-Ranking). We evaluate TrialGPT on three cohorts of 183 synthetic patients with over 75,000 trial annotations. TrialGPT-Retrieval can recall over 90% of relevant trials using less than 6% of the initial collection. Manual evaluations on 1015 patient-criterion pairs show that TrialGPT-Matching achieves an accuracy of 87.3% with faithful explanations, close to the expert performance. The TrialGPT-Ranking scores are highly correlated with human judgments and outperform the best-competing models by 43.8% in ranking and excluding trials. Furthermore, our user study reveals that TrialGPT can reduce the screening time by 42.6% in patient recruitment. Overall, these results have demonstrated promising opportunities for patient-to-trial matching with TrialGPT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
矮小的聪展完成签到,获得积分10
刚刚
factor完成签到,获得积分10
刚刚
Hello应助李来仪采纳,获得10
1秒前
SEV发布了新的文献求助10
1秒前
1秒前
1秒前
坚强亦丝应助隐形机器猫采纳,获得10
2秒前
小马甲应助SCI采纳,获得10
3秒前
老疯智发布了新的文献求助10
3秒前
sweetbearm应助通~采纳,获得10
3秒前
神凰完成签到,获得积分10
3秒前
Z小姐发布了新的文献求助10
4秒前
NexusExplorer应助白泽采纳,获得10
4秒前
5秒前
5秒前
火星上妙梦完成签到 ,获得积分10
5秒前
赘婿应助mayungui采纳,获得10
5秒前
贾不可发布了新的文献求助10
6秒前
英俊梦槐发布了新的文献求助30
6秒前
Xu完成签到,获得积分10
7秒前
7秒前
秀丽千山完成签到,获得积分10
7秒前
8秒前
9秒前
哈哈哈哈完成签到,获得积分10
9秒前
沧海泪发布了新的文献求助10
10秒前
小胡先森应助凤凰山采纳,获得10
10秒前
一一完成签到,获得积分10
10秒前
惠惠发布了新的文献求助10
10秒前
shotgod完成签到,获得积分20
11秒前
科研通AI5应助蕾子采纳,获得10
11秒前
happy杨完成签到 ,获得积分10
11秒前
lichaoyes发布了新的文献求助10
11秒前
11秒前
Owen应助通~采纳,获得10
11秒前
封闭货车发布了新的文献求助10
12秒前
12秒前
www发布了新的文献求助10
13秒前
13秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794