Risk spillover across Chinese industries: novel evidence from multilayer connectedness networks

社会联系 波动性(金融) 溢出效应 房地产 计量经济学 风险价值 系统性风险 计算机科学 风险管理 经济 金融危机 财务 微观经济学 心理学 心理治疗师 宏观经济学
作者
Xiu Jin,YU Jing-tao,Yueli Liu,Ning Chen
出处
期刊:Kybernetes [Emerald (MCB UP)]
标识
DOI:10.1108/k-09-2024-2488
摘要

Purpose Previous research has predominantly concentrated on examining risk spillovers through single-layer networks, neglecting the multi-related and multilayer network characteristics of the economic system. This study constructs multilayer connectedness networks, including return, volatility and extreme risk layers, to systematically analyze the risk spillovers across Chinese industries at the system and industry levels. Design/methodology/approach Previous studies have constructed multilayer networks using Diebold and Yilmaz’s (2012) approach or the time-varying parameter vector autoregressive (TVP-VAR) connectedness model. In this study, we employ the TVP-VAR-extended joint connectedness approach, which improves these methods and captures risk spillovers more accurately. Findings At the system level, the risk spillover across industries exhibits distinct network structures and dynamic evolution behaviors across different layers. During extreme events, the intensity, scope and speed of risk spillovers increase markedly across all layers, with volatility and extreme risk layers demonstrating greater sensitivity to crises. At the industry level, industrial and optional consumption typically serve as risk transmitters, while medicine and health, as well as financial real estate, tend to be risk receivers across three layers. Moreover, industrial, optional consumption and materials exhibit significant systemic importance. Originality/value To the best of our knowledge, this is the first study to apply multilayer networks with return, volatility and extreme risk layers to systematically examine risk spillovers between Chinese industries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
lml520完成签到,获得积分10
刚刚
亚宁完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
3秒前
Dandanhuang发布了新的文献求助10
3秒前
6秒前
锐哥发布了新的文献求助10
6秒前
6秒前
单纯灵安发布了新的文献求助10
6秒前
今后应助标致不评采纳,获得10
8秒前
9秒前
111发布了新的文献求助10
10秒前
10秒前
机智大有发布了新的文献求助10
11秒前
酷波er应助壮观的斑马采纳,获得10
13秒前
英俊的铭应助雪白的稀采纳,获得10
15秒前
希望天下0贩的0应助111采纳,获得10
16秒前
17秒前
小二郎应助Attention采纳,获得10
18秒前
zzz关闭了zzz文献求助
19秒前
美好的大白完成签到,获得积分10
20秒前
20秒前
22秒前
ckb0901完成签到,获得积分10
23秒前
爆米花应助小波采纳,获得10
23秒前
25秒前
幸福莫茗完成签到,获得积分10
25秒前
顺利毕业发布了新的文献求助10
26秒前
湘文发布了新的文献求助10
26秒前
李健的粉丝团团长应助soso采纳,获得10
26秒前
28秒前
28秒前
活力的雨莲完成签到,获得积分10
29秒前
30秒前
小二郎应助文艺的小馒头采纳,获得10
31秒前
Aurinse发布了新的文献求助10
31秒前
发SCI发布了新的文献求助10
31秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
ANSYS Workbench基础教程与实例详解 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 免疫学 细胞生物学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 3325211
求助须知:如何正确求助?哪些是违规求助? 2955944
关于积分的说明 8578449
捐赠科研通 2633884
什么是DOI,文献DOI怎么找? 1441547
科研通“疑难数据库(出版商)”最低求助积分说明 667874
邀请新用户注册赠送积分活动 654575