Risk spillover across Chinese industries: novel evidence from multilayer connectedness networks

社会联系 波动性(金融) 溢出效应 房地产 计量经济学 风险价值 系统性风险 计算机科学 风险管理 经济 金融危机 财务 微观经济学 心理学 心理治疗师 宏观经济学
作者
Xiu Jin,YU Jing-tao,Yueli Liu,Ning Chen
出处
期刊:Kybernetes [Emerald Publishing Limited]
标识
DOI:10.1108/k-09-2024-2488
摘要

Purpose Previous research has predominantly concentrated on examining risk spillovers through single-layer networks, neglecting the multi-related and multilayer network characteristics of the economic system. This study constructs multilayer connectedness networks, including return, volatility and extreme risk layers, to systematically analyze the risk spillovers across Chinese industries at the system and industry levels. Design/methodology/approach Previous studies have constructed multilayer networks using Diebold and Yilmaz’s (2012) approach or the time-varying parameter vector autoregressive (TVP-VAR) connectedness model. In this study, we employ the TVP-VAR-extended joint connectedness approach, which improves these methods and captures risk spillovers more accurately. Findings At the system level, the risk spillover across industries exhibits distinct network structures and dynamic evolution behaviors across different layers. During extreme events, the intensity, scope and speed of risk spillovers increase markedly across all layers, with volatility and extreme risk layers demonstrating greater sensitivity to crises. At the industry level, industrial and optional consumption typically serve as risk transmitters, while medicine and health, as well as financial real estate, tend to be risk receivers across three layers. Moreover, industrial, optional consumption and materials exhibit significant systemic importance. Originality/value To the best of our knowledge, this is the first study to apply multilayer networks with return, volatility and extreme risk layers to systematically examine risk spillovers between Chinese industries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hui发布了新的文献求助10
刚刚
菠萝卷完成签到,获得积分10
1秒前
Dean完成签到,获得积分20
1秒前
Aten应助liars采纳,获得10
1秒前
金枪鱼子应助kjh采纳,获得30
1秒前
Robe完成签到,获得积分20
1秒前
鹤轸完成签到,获得积分10
2秒前
vv完成签到,获得积分10
2秒前
曾经碧蓉完成签到,获得积分20
2秒前
郑恩熙完成签到,获得积分10
2秒前
小雪糕完成签到,获得积分10
3秒前
大方弘文完成签到,获得积分10
4秒前
叶子完成签到,获得积分10
4秒前
4秒前
该房地产个人的完成签到,获得积分10
5秒前
runer发布了新的文献求助10
5秒前
冯宇完成签到,获得积分20
5秒前
乐乐应助lqkcqmu采纳,获得30
6秒前
Leisure_Lee发布了新的文献求助30
8秒前
过氧化氢应助[刘小婷]采纳,获得10
8秒前
华仔应助小马过河采纳,获得10
9秒前
丢丢完成签到,获得积分10
9秒前
情怀应助Yellue采纳,获得10
9秒前
终生科研徒刑完成签到 ,获得积分10
9秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
9秒前
小陈发布了新的文献求助10
9秒前
10秒前
djf完成签到,获得积分10
10秒前
10秒前
11秒前
FashionBoy应助飘逸秋荷采纳,获得10
11秒前
赘婿应助悲凉的尔蓝采纳,获得10
11秒前
彭于彦祖应助符宇新采纳,获得30
12秒前
hzc应助hui采纳,获得10
13秒前
伊yan完成签到 ,获得积分10
13秒前
13秒前
追寻安柏发布了新的文献求助10
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986829
求助须知:如何正确求助?哪些是违规求助? 3529292
关于积分的说明 11244137
捐赠科研通 3267685
什么是DOI,文献DOI怎么找? 1803843
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808600