Deciphering risk factors for severe postherpetic neuralgia in patients with herpes zoster: an interpretable machine learning approach

疱疹后神经痛 木瓦 医学 接收机工作特性 机器学习 病历 药方 风险因素 曲线下面积 回顾性队列研究 儿科 人工智能 内科学 麻醉 神经病理性疼痛 计算机科学 免疫学 病毒 药理学
作者
Soo Jung Park,Jiangyue Han,Jong Bum Choi,Sangkee Min,Jungchan Park,Suein Choi
出处
期刊:Regional Anesthesia and Pain Medicine [BMJ]
卷期号:: rapm-106003
标识
DOI:10.1136/rapm-2024-106003
摘要

Introduction Postherpetic neuralgia (PHN) is a common complication of herpes zoster (HZ). This study aimed to use a large real-world electronic medical records database to determine the optimal machine learning model for predicting the progression to severe PHN and to identify the associated risk factors. Methods We analyzed the electronic medical records of 23,326 patients diagnosed with HZ from January 2010 to June 2020. PHN was defined as pain persisting for ≥90 days post-HZ, based on diagnostic and prescription codes. Five machine learning algorithms were compared with select the optimal predictive model and a subsequent risk factor analysis was conducted. Results Of the 23,326 patients reviewed, 8,878 met the eligibility criteria for the HZ cohort. Among these, 801 patients (9.0%) progressed to severe PHN. Among the various machine learning approaches, XGBoost—an approach that combines multiple decision trees to improve predictive accuracy—performed the best in predicting outcomes ( F 1 score, 0.351; accuracy, 0.900; area under the receiver operating characteristic curve, 0.787). Using this model, we revealed eight major risk factors: older age, female sex, history of shingles and cancer, use of immunosuppressants and antidepressants, intensive initial pain, and the neutrophil-to-lymphocyte ratio. When patients were categorized into low-risk and high-risk groups based on the predictive model, PHN was seven times more likely to occur in the high-risk group (p<0.001). Conclusions Leveraging machine learning analysis, this study identifies an optimal model for predicting severe PHN and highlights key associated risk factors. This model will enable the establishment of more proactive treatments for high-risk patients, potentially mitigating the progression to severe PHN.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liu发布了新的文献求助20
刚刚
来了来了完成签到 ,获得积分10
刚刚
太清发布了新的文献求助10
1秒前
1秒前
1111完成签到,获得积分10
2秒前
2秒前
Ava应助frank采纳,获得10
3秒前
4秒前
爆米花应助篇篇高分采纳,获得10
4秒前
香蕉觅云应助执着黎昕采纳,获得10
4秒前
Shrine发布了新的文献求助10
4秒前
5秒前
什么我才是大萌萌完成签到,获得积分0
5秒前
梦梦完成签到 ,获得积分10
6秒前
谷粱诗云发布了新的文献求助10
6秒前
6秒前
6秒前
此去经年完成签到 ,获得积分10
7秒前
FashionBoy应助玺xi采纳,获得10
7秒前
CYAA发布了新的文献求助10
7秒前
Khr1stINK发布了新的文献求助10
9秒前
9秒前
9秒前
gxl完成签到,获得积分10
10秒前
华仔应助li采纳,获得10
10秒前
ccc发布了新的文献求助10
10秒前
liu完成签到,获得积分10
10秒前
11秒前
魔力兔子完成签到,获得积分10
11秒前
打打应助LYDZ1采纳,获得10
11秒前
上官若男应助笛卡尔采纳,获得30
12秒前
Shrine完成签到,获得积分10
12秒前
大气沛容发布了新的文献求助10
12秒前
12秒前
静心完成签到,获得积分10
13秒前
13秒前
香蕉觅云应助feng采纳,获得10
14秒前
魔力兔子发布了新的文献求助10
14秒前
wm发布了新的文献求助10
14秒前
篇篇高分发布了新的文献求助10
15秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
山海经图录 李云中版 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3327435
求助须知:如何正确求助?哪些是违规求助? 2957773
关于积分的说明 8587067
捐赠科研通 2635861
什么是DOI,文献DOI怎么找? 1442616
科研通“疑难数据库(出版商)”最低求助积分说明 668315
邀请新用户注册赠送积分活动 655396