Deciphering risk factors for severe postherpetic neuralgia in patients with herpes zoster: an interpretable machine learning approach

疱疹后神经痛 木瓦 医学 接收机工作特性 机器学习 病历 药方 风险因素 曲线下面积 回顾性队列研究 儿科 人工智能 内科学 麻醉 神经病理性疼痛 计算机科学 免疫学 病毒 药理学
作者
Soo Jung Park,Jiangyue Han,Jong Bum Choi,Sangkee Min,Jungchan Park,Suein Choi
出处
期刊:Regional Anesthesia and Pain Medicine [BMJ]
卷期号:: rapm-106003
标识
DOI:10.1136/rapm-2024-106003
摘要

Introduction Postherpetic neuralgia (PHN) is a common complication of herpes zoster (HZ). This study aimed to use a large real-world electronic medical records database to determine the optimal machine learning model for predicting the progression to severe PHN and to identify the associated risk factors. Methods We analyzed the electronic medical records of 23,326 patients diagnosed with HZ from January 2010 to June 2020. PHN was defined as pain persisting for ≥90 days post-HZ, based on diagnostic and prescription codes. Five machine learning algorithms were compared with select the optimal predictive model and a subsequent risk factor analysis was conducted. Results Of the 23,326 patients reviewed, 8,878 met the eligibility criteria for the HZ cohort. Among these, 801 patients (9.0%) progressed to severe PHN. Among the various machine learning approaches, XGBoost—an approach that combines multiple decision trees to improve predictive accuracy—performed the best in predicting outcomes ( F 1 score, 0.351; accuracy, 0.900; area under the receiver operating characteristic curve, 0.787). Using this model, we revealed eight major risk factors: older age, female sex, history of shingles and cancer, use of immunosuppressants and antidepressants, intensive initial pain, and the neutrophil-to-lymphocyte ratio. When patients were categorized into low-risk and high-risk groups based on the predictive model, PHN was seven times more likely to occur in the high-risk group (p<0.001). Conclusions Leveraging machine learning analysis, this study identifies an optimal model for predicting severe PHN and highlights key associated risk factors. This model will enable the establishment of more proactive treatments for high-risk patients, potentially mitigating the progression to severe PHN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shen应助无奈天亦采纳,获得10
1秒前
1秒前
liuxuepeng完成签到,获得积分20
1秒前
3秒前
安谢发布了新的文献求助10
3秒前
Owen应助章冰海采纳,获得10
4秒前
许起眸应助galioo3000采纳,获得10
5秒前
5秒前
yyds发布了新的文献求助10
5秒前
领导范儿应助mumu采纳,获得10
5秒前
Maeve应助科研通管家采纳,获得10
5秒前
5秒前
慕青应助科研通管家采纳,获得10
5秒前
Maeve应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得30
6秒前
穆振云完成签到,获得积分10
6秒前
Maeve应助科研通管家采纳,获得10
6秒前
桐桐应助科研通管家采纳,获得50
6秒前
顺熙完成签到,获得积分10
6秒前
领导范儿应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
完美世界应助科研通管家采纳,获得10
6秒前
华仔应助科研通管家采纳,获得10
6秒前
我是老大应助科研通管家采纳,获得30
6秒前
感谢精益求精转发科研通微信,获得积分50
8秒前
9秒前
乐乐应助Yolo采纳,获得10
10秒前
zuizui发布了新的文献求助10
10秒前
nini发布了新的文献求助10
10秒前
11秒前
orixero应助冬卉采纳,获得10
11秒前
情怀应助Cuttle01采纳,获得10
11秒前
12秒前
打打应助学术蝗虫采纳,获得10
12秒前
13秒前
坚果完成签到 ,获得积分10
13秒前
研究吃完成签到,获得积分10
13秒前
感谢外向青筠转发科研通微信,获得积分50
13秒前
高大的皮皮虾完成签到,获得积分20
14秒前
干净柏柳完成签到 ,获得积分10
14秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Gay and Lesbian Asia 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3754857
求助须知:如何正确求助?哪些是违规求助? 3298267
关于积分的说明 10103966
捐赠科研通 3012797
什么是DOI,文献DOI怎么找? 1654757
邀请新用户注册赠送积分活动 789170
科研通“疑难数据库(出版商)”最低求助积分说明 753214