Lung CT‐based multi‐lesion radiomic model to differentiate between nontuberculous mycobacteria and Mycobacterium tuberculosis

病变 医学 肺结核 无线电技术 放射科 结核分枝杆菌 医学影像学 非结核分枝杆菌 结核分枝杆菌复合物 病理 分枝杆菌 内科学
作者
Yanlin Hu,Lingshan Zhong,Hongying Liu,Wenlong Ding,Li Wang,Zhiheng Xing,Liang Wan
出处
期刊:Medical Physics [Wiley]
卷期号:52 (2): 1086-1095
标识
DOI:10.1002/mp.17537
摘要

Nontuberculous mycobacterial lung disease (NTM-LD) and Mycobacterium tuberculosis lung disease (MTB-LD) are difficult to distinguish based on conventional imaging examinations. In recent years, radiomics has been used to discriminate them. However, existing radiomic methods mainly focus on specific lesion types, and have limitations in handling the presence of multiple lesion types that vary among different patients. We aimed to establish a radiomic model based on multiple lesion types in the patient's CT scans, and analyzed the importance of different lesion types in distinguishing the two diseases. 120 NTM-LD and 120 MTB-LD patients were retrospectively enrolled in this study and randomly split into the training (168) and testing (72) sets. A total of 1037 radiomic features were extracted separately for each lesion type. The univariate analysis, least absolute shrinkage, and selection operator were used to select the significant radiomic features. The radiomic signature score (Radscore) from each lesion type was estimated and aggregated to construct the multi-lesion feature vector for each patient. A multi-lesion radiomic (MLR) model was then established using the random forest classifier, which can estimate importance coefficients for different lesion types. The performances of the MLR model and single radomic models were investigated by the receiver operating characteristic curve (ROC). The impact of the predicted lesion importance was also evaluated in subjective imaging diagnosis. The MLR model achieved an area under the curve (AUC) of 90.2% (95% CI: 86.2% 94.1%) in differentiating NTM-LD and MTB-LD, outperforming the models using specific lesion types following existing radiomic models by 1% to 13%. Among different lesion types, tree-in-bud pattern demonstrated the highest distinguishing value, followed by consolidation, nodules, and lymph node enlargement. Given the estimated lesion importance, two senior radiologists exhibited improved accuracy in diagnosis, with an increased accuracy of 8.33% and 8.34%, respectively. This is the first radiomic study to use multiple lesion types to distinguish NTM-LD and MTB-LD. The developed MLR model performed well in differentiating the two diseases, and the lesion types with high importance exhibited the potential to assist experienced radiologists in clinical decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欢喜板凳完成签到 ,获得积分0
刚刚
大大超人关注了科研通微信公众号
1秒前
沉梦昂志_hzy完成签到,获得积分0
1秒前
orixero应助li采纳,获得10
1秒前
kmkz完成签到,获得积分10
1秒前
在水一方应助繁荣的悟空采纳,获得10
1秒前
2秒前
南宫书瑶完成签到,获得积分10
2秒前
fff发布了新的文献求助10
2秒前
2秒前
jam发布了新的文献求助20
3秒前
流萤完成签到,获得积分10
3秒前
hh关闭了hh文献求助
3秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
科研菜狗完成签到,获得积分10
4秒前
4秒前
美好山槐完成签到,获得积分10
4秒前
August完成签到,获得积分10
4秒前
smile完成签到,获得积分10
4秒前
daxiangjiao完成签到,获得积分10
5秒前
5秒前
飞艇发布了新的文献求助10
5秒前
李健的小迷弟应助罗克采纳,获得10
5秒前
111完成签到,获得积分10
5秒前
含蓄的安蕾完成签到,获得积分10
5秒前
舒心无剑完成签到 ,获得积分10
6秒前
6秒前
h1909完成签到,获得积分10
6秒前
左丘尔阳完成签到,获得积分10
6秒前
叁拾肆完成签到,获得积分10
6秒前
7秒前
科研菜狗发布了新的文献求助10
7秒前
负责的母鸡完成签到,获得积分10
7秒前
7秒前
Faceman完成签到,获得积分20
8秒前
cc2064完成签到,获得积分10
8秒前
科研的人完成签到 ,获得积分10
9秒前
寒冷南晴完成签到,获得积分10
9秒前
ceeray23发布了新的文献求助20
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573825
求助须知:如何正确求助?哪些是违规求助? 4660098
关于积分的说明 14727788
捐赠科研通 4599933
什么是DOI,文献DOI怎么找? 2524546
邀请新用户注册赠送积分活动 1494900
关于科研通互助平台的介绍 1464997