已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Lung CT‐based multi‐lesion radiomic model to differentiate between nontuberculous mycobacteria and Mycobacterium tuberculosis

病变 医学 肺结核 无线电技术 放射科 结核分枝杆菌 医学影像学 非结核分枝杆菌 结核分枝杆菌复合物 病理 分枝杆菌 内科学
作者
Yanlin Hu,Lingshan Zhong,Hongying Liu,Wenlong Ding,Li Wang,Zhiheng Xing,Liang Wan
出处
期刊:Medical Physics [Wiley]
卷期号:52 (2): 1086-1095
标识
DOI:10.1002/mp.17537
摘要

Nontuberculous mycobacterial lung disease (NTM-LD) and Mycobacterium tuberculosis lung disease (MTB-LD) are difficult to distinguish based on conventional imaging examinations. In recent years, radiomics has been used to discriminate them. However, existing radiomic methods mainly focus on specific lesion types, and have limitations in handling the presence of multiple lesion types that vary among different patients. We aimed to establish a radiomic model based on multiple lesion types in the patient's CT scans, and analyzed the importance of different lesion types in distinguishing the two diseases. 120 NTM-LD and 120 MTB-LD patients were retrospectively enrolled in this study and randomly split into the training (168) and testing (72) sets. A total of 1037 radiomic features were extracted separately for each lesion type. The univariate analysis, least absolute shrinkage, and selection operator were used to select the significant radiomic features. The radiomic signature score (Radscore) from each lesion type was estimated and aggregated to construct the multi-lesion feature vector for each patient. A multi-lesion radiomic (MLR) model was then established using the random forest classifier, which can estimate importance coefficients for different lesion types. The performances of the MLR model and single radomic models were investigated by the receiver operating characteristic curve (ROC). The impact of the predicted lesion importance was also evaluated in subjective imaging diagnosis. The MLR model achieved an area under the curve (AUC) of 90.2% (95% CI: 86.2% 94.1%) in differentiating NTM-LD and MTB-LD, outperforming the models using specific lesion types following existing radiomic models by 1% to 13%. Among different lesion types, tree-in-bud pattern demonstrated the highest distinguishing value, followed by consolidation, nodules, and lymph node enlargement. Given the estimated lesion importance, two senior radiologists exhibited improved accuracy in diagnosis, with an increased accuracy of 8.33% and 8.34%, respectively. This is the first radiomic study to use multiple lesion types to distinguish NTM-LD and MTB-LD. The developed MLR model performed well in differentiating the two diseases, and the lesion types with high importance exhibited the potential to assist experienced radiologists in clinical decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
俏皮元珊发布了新的文献求助10
4秒前
6秒前
清欢渡Hertz完成签到 ,获得积分10
7秒前
7秒前
Mayily完成签到,获得积分10
9秒前
9秒前
幸运的姜姜完成签到 ,获得积分10
10秒前
参也完成签到 ,获得积分10
10秒前
11秒前
hx完成签到 ,获得积分10
12秒前
yao发布了新的文献求助10
13秒前
卷毛维安发布了新的文献求助10
13秒前
汉堡包应助Antarxtica采纳,获得10
14秒前
Bio发布了新的文献求助30
14秒前
李小伟完成签到,获得积分10
15秒前
JamesPei应助11采纳,获得10
16秒前
田様应助Yolo采纳,获得10
16秒前
李小伟发布了新的文献求助10
18秒前
无花果应助yao采纳,获得10
19秒前
19秒前
上官若男应助饶渔采纳,获得10
20秒前
andrele应助科研通管家采纳,获得10
21秒前
彭于晏应助科研通管家采纳,获得10
21秒前
科研通AI2S应助科研通管家采纳,获得10
21秒前
科研通AI6应助科研通管家采纳,获得10
21秒前
21秒前
21秒前
21秒前
Bio完成签到,获得积分10
22秒前
wadiu发布了新的文献求助30
23秒前
24秒前
26秒前
jiaojiao完成签到,获得积分10
26秒前
27秒前
百宝完成签到,获得积分10
28秒前
魏建威发布了新的文献求助100
28秒前
小z发布了新的文献求助10
28秒前
30秒前
CodeCraft应助小z采纳,获得10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
理系総合のための生命科学 第5版〜分子・細胞・個体から知る“生命"のしくみ 800
普遍生物学: 物理に宿る生命、生命の紡ぐ物理 800
花の香りの秘密―遺伝子情報から機能性まで 800
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5606479
求助须知:如何正确求助?哪些是违规求助? 4690888
关于积分的说明 14866406
捐赠科研通 4705982
什么是DOI,文献DOI怎么找? 2542717
邀请新用户注册赠送积分活动 1508129
关于科研通互助平台的介绍 1472276