Lung CT‐based multi‐lesion radiomic model to differentiate between nontuberculous mycobacteria and Mycobacterium tuberculosis

病变 医学 肺结核 无线电技术 放射科 结核分枝杆菌 医学影像学 非结核分枝杆菌 结核分枝杆菌复合物 病理 分枝杆菌 内科学
作者
Yanlin Hu,Lingshan Zhong,Hongying Liu,Wenlong Ding,Li Wang,Zhiheng Xing,Liang Wan
出处
期刊:Medical Physics [Wiley]
卷期号:52 (2): 1086-1095
标识
DOI:10.1002/mp.17537
摘要

Nontuberculous mycobacterial lung disease (NTM-LD) and Mycobacterium tuberculosis lung disease (MTB-LD) are difficult to distinguish based on conventional imaging examinations. In recent years, radiomics has been used to discriminate them. However, existing radiomic methods mainly focus on specific lesion types, and have limitations in handling the presence of multiple lesion types that vary among different patients. We aimed to establish a radiomic model based on multiple lesion types in the patient's CT scans, and analyzed the importance of different lesion types in distinguishing the two diseases. 120 NTM-LD and 120 MTB-LD patients were retrospectively enrolled in this study and randomly split into the training (168) and testing (72) sets. A total of 1037 radiomic features were extracted separately for each lesion type. The univariate analysis, least absolute shrinkage, and selection operator were used to select the significant radiomic features. The radiomic signature score (Radscore) from each lesion type was estimated and aggregated to construct the multi-lesion feature vector for each patient. A multi-lesion radiomic (MLR) model was then established using the random forest classifier, which can estimate importance coefficients for different lesion types. The performances of the MLR model and single radomic models were investigated by the receiver operating characteristic curve (ROC). The impact of the predicted lesion importance was also evaluated in subjective imaging diagnosis. The MLR model achieved an area under the curve (AUC) of 90.2% (95% CI: 86.2% 94.1%) in differentiating NTM-LD and MTB-LD, outperforming the models using specific lesion types following existing radiomic models by 1% to 13%. Among different lesion types, tree-in-bud pattern demonstrated the highest distinguishing value, followed by consolidation, nodules, and lymph node enlargement. Given the estimated lesion importance, two senior radiologists exhibited improved accuracy in diagnosis, with an increased accuracy of 8.33% and 8.34%, respectively. This is the first radiomic study to use multiple lesion types to distinguish NTM-LD and MTB-LD. The developed MLR model performed well in differentiating the two diseases, and the lesion types with high importance exhibited the potential to assist experienced radiologists in clinical decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
FXQ123_范发布了新的文献求助10
刚刚
刚刚
小小鱼发布了新的文献求助10
刚刚
小children丙完成签到,获得积分10
刚刚
鲤鱼野狼发布了新的文献求助10
刚刚
k.o.发布了新的文献求助10
刚刚
1秒前
psy完成签到,获得积分10
2秒前
2秒前
科研通AI6应助32采纳,获得10
2秒前
bin完成签到,获得积分10
3秒前
3秒前
勤劳小之完成签到,获得积分20
3秒前
千寻发布了新的文献求助10
4秒前
4秒前
yyy发布了新的文献求助10
4秒前
jie发布了新的文献求助10
4秒前
无花果应助Madge采纳,获得20
4秒前
5秒前
liang发布了新的文献求助10
5秒前
小灰灰发布了新的文献求助10
5秒前
Xiyixuan发布了新的文献求助10
5秒前
5秒前
ss完成签到,获得积分10
5秒前
原始人发布了新的文献求助10
6秒前
森林林林完成签到 ,获得积分10
7秒前
ewind完成签到 ,获得积分10
7秒前
洪豆豆完成签到,获得积分10
7秒前
7秒前
OMIT完成签到,获得积分10
8秒前
羽化成仙完成签到 ,获得积分10
8秒前
好运爆彭完成签到,获得积分10
8秒前
体贴乐巧完成签到,获得积分10
8秒前
lnzdf完成签到,获得积分20
9秒前
9秒前
forever发布了新的文献求助10
9秒前
10秒前
wind2631发布了新的文献求助10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646155
求助须知:如何正确求助?哪些是违规求助? 4770208
关于积分的说明 15033403
捐赠科研通 4804753
什么是DOI,文献DOI怎么找? 2569195
邀请新用户注册赠送积分活动 1526252
关于科研通互助平台的介绍 1485762