Lung CT‐based multi‐lesion radiomic model to differentiate between nontuberculous mycobacteria and Mycobacterium tuberculosis

病变 医学 肺结核 无线电技术 放射科 结核分枝杆菌 医学影像学 非结核分枝杆菌 结核分枝杆菌复合物 病理 分枝杆菌 内科学
作者
Yanlin Hu,Lingshan Zhong,Hongying Liu,Wenlong Ding,Li Wang,Zhiheng Xing,Liang Wan
出处
期刊:Medical Physics [Wiley]
卷期号:52 (2): 1086-1095
标识
DOI:10.1002/mp.17537
摘要

Nontuberculous mycobacterial lung disease (NTM-LD) and Mycobacterium tuberculosis lung disease (MTB-LD) are difficult to distinguish based on conventional imaging examinations. In recent years, radiomics has been used to discriminate them. However, existing radiomic methods mainly focus on specific lesion types, and have limitations in handling the presence of multiple lesion types that vary among different patients. We aimed to establish a radiomic model based on multiple lesion types in the patient's CT scans, and analyzed the importance of different lesion types in distinguishing the two diseases. 120 NTM-LD and 120 MTB-LD patients were retrospectively enrolled in this study and randomly split into the training (168) and testing (72) sets. A total of 1037 radiomic features were extracted separately for each lesion type. The univariate analysis, least absolute shrinkage, and selection operator were used to select the significant radiomic features. The radiomic signature score (Radscore) from each lesion type was estimated and aggregated to construct the multi-lesion feature vector for each patient. A multi-lesion radiomic (MLR) model was then established using the random forest classifier, which can estimate importance coefficients for different lesion types. The performances of the MLR model and single radomic models were investigated by the receiver operating characteristic curve (ROC). The impact of the predicted lesion importance was also evaluated in subjective imaging diagnosis. The MLR model achieved an area under the curve (AUC) of 90.2% (95% CI: 86.2% 94.1%) in differentiating NTM-LD and MTB-LD, outperforming the models using specific lesion types following existing radiomic models by 1% to 13%. Among different lesion types, tree-in-bud pattern demonstrated the highest distinguishing value, followed by consolidation, nodules, and lymph node enlargement. Given the estimated lesion importance, two senior radiologists exhibited improved accuracy in diagnosis, with an increased accuracy of 8.33% and 8.34%, respectively. This is the first radiomic study to use multiple lesion types to distinguish NTM-LD and MTB-LD. The developed MLR model performed well in differentiating the two diseases, and the lesion types with high importance exhibited the potential to assist experienced radiologists in clinical decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
1秒前
Kia发布了新的文献求助30
1秒前
GUKGO完成签到,获得积分10
2秒前
limerence完成签到,获得积分10
2秒前
汉堡包应助风轩轩采纳,获得10
2秒前
林深时见鹿完成签到,获得积分10
2秒前
2秒前
13发布了新的文献求助30
3秒前
3秒前
orixero应助清爽朋友采纳,获得10
3秒前
凡人完成签到,获得积分10
4秒前
爆米花应助坚强水杯采纳,获得100
4秒前
shenyanlei发布了新的文献求助10
4秒前
欢喜大地发布了新的文献求助10
4秒前
Spencer发布了新的文献求助30
4秒前
随便发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
DTS发布了新的文献求助10
7秒前
7秒前
1851611453完成签到 ,获得积分10
8秒前
刘丰铭发布了新的文献求助10
8秒前
SciGPT应助jhonnyhuang采纳,获得10
8秒前
8秒前
10秒前
sunshine完成签到,获得积分10
10秒前
风清扬发布了新的文献求助10
10秒前
科研通AI6应助结实的栾采纳,获得10
10秒前
AskNature完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
13完成签到,获得积分20
11秒前
12秒前
12秒前
358489228发布了新的文献求助10
12秒前
Xiao完成签到,获得积分10
12秒前
Katherine完成签到 ,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608256
求助须知:如何正确求助?哪些是违规求助? 4692810
关于积分的说明 14875754
捐赠科研通 4717042
什么是DOI,文献DOI怎么找? 2544147
邀请新用户注册赠送积分活动 1509105
关于科研通互助平台的介绍 1472802