亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Lung CT‐based multi‐lesion radiomic model to differentiate between nontuberculous mycobacteria and Mycobacterium tuberculosis

病变 医学 接收机工作特性 肺结核 放射科 结核分枝杆菌 单变量 非结核分枝杆菌 结核瘤 病理 核医学 分枝杆菌 机器学习 内科学 多元统计 计算机科学
作者
Yanlin Hu,Lingshan Zhong,Hongying Liu,Wenlong Ding,Li Wang,Zhiheng Xing,Liang Wan
出处
期刊:Medical Physics [Wiley]
标识
DOI:10.1002/mp.17537
摘要

Abstract Background Nontuberculous mycobacterial lung disease (NTM‐LD) and Mycobacterium tuberculosis lung disease (MTB‐LD) are difficult to distinguish based on conventional imaging examinations. In recent years, radiomics has been used to discriminate them. However, existing radiomic methods mainly focus on specific lesion types, and have limitations in handling the presence of multiple lesion types that vary among different patients. Purpose We aimed to establish a radiomic model based on multiple lesion types in the patient's CT scans, and analyzed the importance of different lesion types in distinguishing the two diseases. Methods 120 NTM‐LD and 120 MTB‐LD patients were retrospectively enrolled in this study and randomly split into the training (168) and testing (72) sets. A total of 1037 radiomic features were extracted separately for each lesion type. The univariate analysis, least absolute shrinkage, and selection operator were used to select the significant radiomic features. The radiomic signature score (Radscore) from each lesion type was estimated and aggregated to construct the multi‐lesion feature vector for each patient. A multi‐lesion radiomic (MLR) model was then established using the random forest classifier, which can estimate importance coefficients for different lesion types. The performances of the MLR model and single radomic models were investigated by the receiver operating characteristic curve (ROC). The impact of the predicted lesion importance was also evaluated in subjective imaging diagnosis. Results The MLR model achieved an area under the curve (AUC) of 90.2% (95% CI: 86.2% 94.1%) in differentiating NTM‐LD and MTB‐LD, outperforming the models using specific lesion types following existing radiomic models by 1% to 13%. Among different lesion types, tree‐in‐bud pattern demonstrated the highest distinguishing value, followed by consolidation, nodules, and lymph node enlargement. Given the estimated lesion importance, two senior radiologists exhibited improved accuracy in diagnosis, with an increased accuracy of 8.33% and 8.34%, respectively. Conclusions This is the first radiomic study to use multiple lesion types to distinguish NTM‐LD and MTB‐LD. The developed MLR model performed well in differentiating the two diseases, and the lesion types with high importance exhibited the potential to assist experienced radiologists in clinical decision‐making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助Kevin采纳,获得30
1秒前
慕青应助用眼睛吃饭的人采纳,获得10
5秒前
5秒前
平常从蓉完成签到,获得积分10
11秒前
某某某发布了新的文献求助10
11秒前
44秒前
用眼睛吃饭的人完成签到,获得积分10
46秒前
深情安青应助科研通管家采纳,获得10
51秒前
1分钟前
某某某发布了新的文献求助10
1分钟前
MAYAN完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
LZN发布了新的文献求助10
1分钟前
1分钟前
gszy1975完成签到,获得积分10
1分钟前
某某某发布了新的文献求助10
1分钟前
棒棒冰完成签到 ,获得积分10
1分钟前
2分钟前
动听剑心发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
zjj关注了科研通微信公众号
2分钟前
平凡中的限量版完成签到,获得积分10
2分钟前
2分钟前
2分钟前
晴天发布了新的文献求助10
2分钟前
LZN发布了新的文献求助10
3分钟前
3分钟前
3分钟前
某某某发布了新的文献求助10
3分钟前
3分钟前
月军完成签到,获得积分10
3分钟前
彭于晏应助zjj采纳,获得10
3分钟前
492357816完成签到,获得积分10
4分钟前
4分钟前
姜且完成签到 ,获得积分10
4分钟前
4分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
MATLAB在传热学例题中的应用 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3303270
求助须知:如何正确求助?哪些是违规求助? 2937578
关于积分的说明 8482479
捐赠科研通 2611482
什么是DOI,文献DOI怎么找? 1425919
科研通“疑难数据库(出版商)”最低求助积分说明 662457
邀请新用户注册赠送积分活动 647005