Lung CT‐based multi‐lesion radiomic model to differentiate between nontuberculous mycobacteria and Mycobacterium tuberculosis

病变 医学 肺结核 无线电技术 放射科 结核分枝杆菌 医学影像学 非结核分枝杆菌 结核分枝杆菌复合物 病理 分枝杆菌 内科学
作者
Yanlin Hu,Lingshan Zhong,Hongying Liu,Wenlong Ding,Li Wang,Zhiheng Xing,Liang Wan
出处
期刊:Medical Physics [Wiley]
卷期号:52 (2): 1086-1095
标识
DOI:10.1002/mp.17537
摘要

Nontuberculous mycobacterial lung disease (NTM-LD) and Mycobacterium tuberculosis lung disease (MTB-LD) are difficult to distinguish based on conventional imaging examinations. In recent years, radiomics has been used to discriminate them. However, existing radiomic methods mainly focus on specific lesion types, and have limitations in handling the presence of multiple lesion types that vary among different patients. We aimed to establish a radiomic model based on multiple lesion types in the patient's CT scans, and analyzed the importance of different lesion types in distinguishing the two diseases. 120 NTM-LD and 120 MTB-LD patients were retrospectively enrolled in this study and randomly split into the training (168) and testing (72) sets. A total of 1037 radiomic features were extracted separately for each lesion type. The univariate analysis, least absolute shrinkage, and selection operator were used to select the significant radiomic features. The radiomic signature score (Radscore) from each lesion type was estimated and aggregated to construct the multi-lesion feature vector for each patient. A multi-lesion radiomic (MLR) model was then established using the random forest classifier, which can estimate importance coefficients for different lesion types. The performances of the MLR model and single radomic models were investigated by the receiver operating characteristic curve (ROC). The impact of the predicted lesion importance was also evaluated in subjective imaging diagnosis. The MLR model achieved an area under the curve (AUC) of 90.2% (95% CI: 86.2% 94.1%) in differentiating NTM-LD and MTB-LD, outperforming the models using specific lesion types following existing radiomic models by 1% to 13%. Among different lesion types, tree-in-bud pattern demonstrated the highest distinguishing value, followed by consolidation, nodules, and lymph node enlargement. Given the estimated lesion importance, two senior radiologists exhibited improved accuracy in diagnosis, with an increased accuracy of 8.33% and 8.34%, respectively. This is the first radiomic study to use multiple lesion types to distinguish NTM-LD and MTB-LD. The developed MLR model performed well in differentiating the two diseases, and the lesion types with high importance exhibited the potential to assist experienced radiologists in clinical decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
zq发布了新的文献求助10
1秒前
感松完成签到,获得积分10
1秒前
2秒前
2秒前
郭磊关注了科研通微信公众号
2秒前
KerwinLLL完成签到,获得积分10
3秒前
ppp发布了新的文献求助10
4秒前
七七发布了新的文献求助10
4秒前
完美世界应助12578采纳,获得10
4秒前
zho应助ZHY采纳,获得10
4秒前
谭丽平发布了新的文献求助10
4秒前
GaajeoiC应助酸奶烤着吃采纳,获得10
5秒前
充电宝应助活泼的机器猫采纳,获得10
5秒前
兜有米完成签到,获得积分10
5秒前
他们叫我小伟完成签到 ,获得积分10
5秒前
夏夏完成签到 ,获得积分10
5秒前
6秒前
xinanan完成签到,获得积分10
6秒前
6秒前
感动城发布了新的文献求助10
7秒前
NexusExplorer应助Ywl采纳,获得10
7秒前
7秒前
xiaohu完成签到,获得积分10
8秒前
小蘑菇应助小白采纳,获得10
8秒前
EvenCai应助甜甜圈采纳,获得10
8秒前
8秒前
田様应助archer01采纳,获得10
9秒前
丫丫发布了新的文献求助10
9秒前
小嘎完成签到,获得积分10
9秒前
Ava应助王亚荣采纳,获得10
9秒前
无奈的牛马完成签到 ,获得积分10
10秒前
蜂蜜柚子完成签到 ,获得积分0
10秒前
10秒前
奇拉维特完成签到 ,获得积分10
11秒前
11秒前
wwl发布了新的文献求助10
12秒前
清秋发布了新的文献求助10
12秒前
ppp完成签到,获得积分10
12秒前
beimi完成签到,获得积分10
12秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
康复物理因子治疗 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016703
求助须知:如何正确求助?哪些是违规求助? 3556823
关于积分的说明 11322708
捐赠科研通 3289505
什么是DOI,文献DOI怎么找? 1812495
邀请新用户注册赠送积分活动 888064
科研通“疑难数据库(出版商)”最低求助积分说明 812086