Ensemble Network-Based Distillation for Hyperspectral Image Classification in the Presence of Label Noise

高光谱成像 计算机科学 噪音(视频) 人工智能 模式识别(心理学) 图像(数学) 遥感 环境科学 地质学
作者
Youqiang Zhang,Ding Ren,Hao Shi,Jiaxi Liu,Qiqiong Yu,Guo Cao,Xuesong Li
出处
期刊:Remote Sensing [MDPI AG]
卷期号:16 (22): 4247-4247
标识
DOI:10.3390/rs16224247
摘要

Deep learning has made remarkable strides in hyperspectral image (HSI) classification, significantly improving classification performance. However, the challenge of obtaining accurately labeled training samples persists, primarily due to the subjectivity of human annotators and their limited domain knowledge. This often results in erroneous labels, commonly referred to as label noise. Such noisy labels can critically impair the performance of deep learning models, making it essential to address this issue. While previous studies focused on label noise filtering and label correction, these approaches often require estimating noise rates and may inadvertently propagate noisy labels to clean labels, especially in scenarios with high noise levels. In this study, we introduce an ensemble network-based distillation (END) method specifically designed to address the challenges posed by label noise in HSI classification. The core idea is to leverage multiple base neural networks to generate an estimated label distribution from the training data. This estimated distribution is then used alongside the ground-truth labels to train the target network effectively. Moreover, we propose a parameter-adaptive loss function that balances the impact of both the estimated and ground-truth label distributions during the training process. Our approach not only simplifies architectural requirements but also integrates seamlessly into existing deep learning frameworks. Comparative experiments on four hyperspectral datasets demonstrate the effectiveness of our method, highlighting its competitive performance in the presence of label noise.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YANer发布了新的文献求助10
刚刚
1秒前
仇道罡发布了新的文献求助10
1秒前
2秒前
无敌小宽哥完成签到,获得积分10
2秒前
2秒前
牛马完成签到 ,获得积分10
3秒前
3秒前
所所应助成帅哥采纳,获得10
3秒前
优秀毕业生完成签到,获得积分10
3秒前
超帅的以冬完成签到,获得积分20
3秒前
想吃芝士焗饭完成签到 ,获得积分10
3秒前
不配.应助活力的镜子采纳,获得10
4秒前
lxy应助活力的镜子采纳,获得10
4秒前
4秒前
4秒前
5秒前
蔚蓝天空发布了新的文献求助10
6秒前
zzcres发布了新的文献求助10
6秒前
6秒前
稳重茹嫣完成签到,获得积分10
6秒前
Rioo易完成签到,获得积分10
6秒前
7秒前
栗子鱼发布了新的文献求助10
7秒前
Akim应助南风不知意采纳,获得10
7秒前
点奇完成签到,获得积分10
8秒前
善学以致用应助诚心以蕊采纳,获得10
8秒前
研友_GZbV4Z发布了新的文献求助10
8秒前
8秒前
8秒前
雪白眼睛关注了科研通微信公众号
9秒前
无限莫言发布了新的文献求助10
10秒前
jin完成签到,获得积分10
10秒前
清脆的土豆应助snitch采纳,获得10
10秒前
11秒前
ddz发布了新的文献求助80
11秒前
落落落发布了新的文献求助20
12秒前
mi完成签到,获得积分10
12秒前
成帅哥给成帅哥的求助进行了留言
12秒前
lull发布了新的文献求助10
13秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
SIS-ISO/IEC TS 27100:2024 Information technology — Cybersecurity — Overview and concepts (ISO/IEC TS 27100:2020, IDT)(Swedish Standard) 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3231987
求助须知:如何正确求助?哪些是违规求助? 2878991
关于积分的说明 8208546
捐赠科研通 2546450
什么是DOI,文献DOI怎么找? 1375985
科研通“疑难数据库(出版商)”最低求助积分说明 647507
邀请新用户注册赠送积分活动 622675