清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Ensemble Network-Based Distillation for Hyperspectral Image Classification in the Presence of Label Noise

高光谱成像 计算机科学 噪音(视频) 人工智能 模式识别(心理学) 图像(数学) 遥感 环境科学 地质学
作者
Youqiang Zhang,Ding Ren,Hao Shi,Jiaxi Liu,Qiqiong Yu,Guo Cao,Xuesong Li
出处
期刊:Remote Sensing [MDPI AG]
卷期号:16 (22): 4247-4247
标识
DOI:10.3390/rs16224247
摘要

Deep learning has made remarkable strides in hyperspectral image (HSI) classification, significantly improving classification performance. However, the challenge of obtaining accurately labeled training samples persists, primarily due to the subjectivity of human annotators and their limited domain knowledge. This often results in erroneous labels, commonly referred to as label noise. Such noisy labels can critically impair the performance of deep learning models, making it essential to address this issue. While previous studies focused on label noise filtering and label correction, these approaches often require estimating noise rates and may inadvertently propagate noisy labels to clean labels, especially in scenarios with high noise levels. In this study, we introduce an ensemble network-based distillation (END) method specifically designed to address the challenges posed by label noise in HSI classification. The core idea is to leverage multiple base neural networks to generate an estimated label distribution from the training data. This estimated distribution is then used alongside the ground-truth labels to train the target network effectively. Moreover, we propose a parameter-adaptive loss function that balances the impact of both the estimated and ground-truth label distributions during the training process. Our approach not only simplifies architectural requirements but also integrates seamlessly into existing deep learning frameworks. Comparative experiments on four hyperspectral datasets demonstrate the effectiveness of our method, highlighting its competitive performance in the presence of label noise.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
平常的三问完成签到 ,获得积分10
12秒前
2025晨晨完成签到 ,获得积分10
15秒前
whuhustwit完成签到,获得积分10
18秒前
科研通AI2S应助科研通管家采纳,获得10
21秒前
虞无声完成签到,获得积分10
23秒前
美丽的芙完成签到 ,获得积分10
24秒前
36秒前
英姑应助勇往直前采纳,获得10
36秒前
无私雅柏完成签到 ,获得积分10
37秒前
生动冰海完成签到 ,获得积分10
38秒前
zoey发布了新的文献求助10
41秒前
bo完成签到 ,获得积分10
44秒前
49秒前
李健的粉丝团团长应助Msc采纳,获得10
50秒前
落霞与孤鹜齐飞完成签到,获得积分10
53秒前
勇往直前发布了新的文献求助10
55秒前
万能图书馆应助zoey采纳,获得10
59秒前
1分钟前
Msc发布了新的文献求助10
1分钟前
左丘映易完成签到,获得积分0
1分钟前
naczx完成签到,获得积分0
1分钟前
yzhilson完成签到 ,获得积分0
1分钟前
LiangRen完成签到 ,获得积分10
1分钟前
1分钟前
zoey发布了新的文献求助10
2分钟前
zoey完成签到,获得积分10
2分钟前
zzz111发布了新的文献求助10
2分钟前
2分钟前
wayne完成签到 ,获得积分10
2分钟前
久晓完成签到 ,获得积分10
3分钟前
3分钟前
widesky777完成签到 ,获得积分0
3分钟前
Lanyiyang发布了新的文献求助10
3分钟前
MS903完成签到 ,获得积分10
3分钟前
周全完成签到 ,获得积分10
3分钟前
燕儿完成签到 ,获得积分10
3分钟前
liliAnh完成签到 ,获得积分10
3分钟前
Hilda007应助Lanyiyang采纳,获得10
3分钟前
科研通AI6应助leapper采纳,获得10
4分钟前
crystaler完成签到 ,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
扫描探针电化学 1000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 941
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5438737
求助须知:如何正确求助?哪些是违规求助? 4549828
关于积分的说明 14221075
捐赠科研通 4470805
什么是DOI,文献DOI怎么找? 2450023
邀请新用户注册赠送积分活动 1440973
关于科研通互助平台的介绍 1417484