Ensemble Network-Based Distillation for Hyperspectral Image Classification in the Presence of Label Noise

高光谱成像 计算机科学 噪音(视频) 人工智能 模式识别(心理学) 图像(数学) 遥感 环境科学 地质学
作者
Youqiang Zhang,Ding Ren,Hao Shi,Jiaxi Liu,Qiqiong Yu,Guo Cao,Xuesong Li
出处
期刊:Remote Sensing [MDPI AG]
卷期号:16 (22): 4247-4247
标识
DOI:10.3390/rs16224247
摘要

Deep learning has made remarkable strides in hyperspectral image (HSI) classification, significantly improving classification performance. However, the challenge of obtaining accurately labeled training samples persists, primarily due to the subjectivity of human annotators and their limited domain knowledge. This often results in erroneous labels, commonly referred to as label noise. Such noisy labels can critically impair the performance of deep learning models, making it essential to address this issue. While previous studies focused on label noise filtering and label correction, these approaches often require estimating noise rates and may inadvertently propagate noisy labels to clean labels, especially in scenarios with high noise levels. In this study, we introduce an ensemble network-based distillation (END) method specifically designed to address the challenges posed by label noise in HSI classification. The core idea is to leverage multiple base neural networks to generate an estimated label distribution from the training data. This estimated distribution is then used alongside the ground-truth labels to train the target network effectively. Moreover, we propose a parameter-adaptive loss function that balances the impact of both the estimated and ground-truth label distributions during the training process. Our approach not only simplifies architectural requirements but also integrates seamlessly into existing deep learning frameworks. Comparative experiments on four hyperspectral datasets demonstrate the effectiveness of our method, highlighting its competitive performance in the presence of label noise.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
芷兰丁香发布了新的文献求助10
刚刚
麦麦完成签到,获得积分10
刚刚
刚刚
1秒前
1秒前
1秒前
June完成签到,获得积分10
1秒前
慕青应助邮寄短诗采纳,获得10
1秒前
Jasper应助兔兔采纳,获得10
1秒前
Stella应助悦己采纳,获得30
2秒前
2秒前
2秒前
正好完成签到,获得积分10
3秒前
vcc完成签到 ,获得积分10
3秒前
夕荀发布了新的文献求助10
3秒前
安徒生完成签到,获得积分10
4秒前
4秒前
无语完成签到,获得积分10
4秒前
周周发布了新的文献求助10
5秒前
5秒前
希望天下0贩的0应助彳亍采纳,获得10
5秒前
林炎发布了新的文献求助10
5秒前
小羽完成签到 ,获得积分10
6秒前
7秒前
追寻紫夏完成签到 ,获得积分10
7秒前
霸气的菠萝完成签到,获得积分10
7秒前
Wen完成签到,获得积分10
7秒前
开放青旋应助苏silence采纳,获得80
7秒前
8秒前
yu完成签到 ,获得积分10
8秒前
Lucifer完成签到,获得积分10
8秒前
8秒前
8秒前
11完成签到,获得积分10
8秒前
scanker1981完成签到,获得积分10
8秒前
深情安青应助zhaopenghui采纳,获得10
9秒前
小星星完成签到 ,获得积分10
9秒前
600完成签到,获得积分10
9秒前
guohh完成签到,获得积分10
9秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5574114
求助须知:如何正确求助?哪些是违规求助? 4660331
关于积分的说明 14729315
捐赠科研通 4600225
什么是DOI,文献DOI怎么找? 2524740
邀请新用户注册赠送积分活动 1495018
关于科研通互助平台的介绍 1465034