Ensemble Network-Based Distillation for Hyperspectral Image Classification in the Presence of Label Noise

高光谱成像 计算机科学 噪音(视频) 人工智能 模式识别(心理学) 图像(数学) 遥感 环境科学 地质学
作者
Youqiang Zhang,Ding Ren,Hao Shi,Jiaxi Liu,Qiqiong Yu,Guo Cao,Xuesong Li
出处
期刊:Remote Sensing [MDPI AG]
卷期号:16 (22): 4247-4247
标识
DOI:10.3390/rs16224247
摘要

Deep learning has made remarkable strides in hyperspectral image (HSI) classification, significantly improving classification performance. However, the challenge of obtaining accurately labeled training samples persists, primarily due to the subjectivity of human annotators and their limited domain knowledge. This often results in erroneous labels, commonly referred to as label noise. Such noisy labels can critically impair the performance of deep learning models, making it essential to address this issue. While previous studies focused on label noise filtering and label correction, these approaches often require estimating noise rates and may inadvertently propagate noisy labels to clean labels, especially in scenarios with high noise levels. In this study, we introduce an ensemble network-based distillation (END) method specifically designed to address the challenges posed by label noise in HSI classification. The core idea is to leverage multiple base neural networks to generate an estimated label distribution from the training data. This estimated distribution is then used alongside the ground-truth labels to train the target network effectively. Moreover, we propose a parameter-adaptive loss function that balances the impact of both the estimated and ground-truth label distributions during the training process. Our approach not only simplifies architectural requirements but also integrates seamlessly into existing deep learning frameworks. Comparative experiments on four hyperspectral datasets demonstrate the effectiveness of our method, highlighting its competitive performance in the presence of label noise.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yokkio完成签到,获得积分10
刚刚
孙尧芳发布了新的文献求助10
刚刚
豨莶完成签到,获得积分10
刚刚
兔子完成签到,获得积分10
刚刚
silsotiscolor完成签到,获得积分10
1秒前
1秒前
2秒前
Lan完成签到,获得积分10
2秒前
2秒前
liangerla完成签到,获得积分10
2秒前
zszzzsss完成签到,获得积分10
2秒前
油炸小麻花完成签到,获得积分10
3秒前
Hello应助hgc采纳,获得10
3秒前
丘比特应助zxlllll采纳,获得10
3秒前
小渝干发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
江鑫楷发布了新的文献求助10
4秒前
4秒前
5秒前
5秒前
您的帮助将会点亮世界完成签到,获得积分10
5秒前
5秒前
囚徒发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
zhou完成签到,获得积分10
6秒前
大胆问枫完成签到,获得积分10
6秒前
7秒前
7秒前
candy完成签到,获得积分10
7秒前
Akim应助常远采纳,获得10
7秒前
8秒前
8秒前
zszzzsss发布了新的文献求助10
8秒前
8秒前
9秒前
旋儿发布了新的文献求助10
9秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5338124
求助须知:如何正确求助?哪些是违规求助? 4475332
关于积分的说明 13928100
捐赠科研通 4370553
什么是DOI,文献DOI怎么找? 2401309
邀请新用户注册赠送积分活动 1394430
关于科研通互助平台的介绍 1366313