Ensemble Network-Based Distillation for Hyperspectral Image Classification in the Presence of Label Noise

高光谱成像 计算机科学 噪音(视频) 人工智能 模式识别(心理学) 图像(数学) 遥感 环境科学 地质学
作者
Youqiang Zhang,Ding Ren,Hao Shi,Jiaxi Liu,Qiqiong Yu,Guo Cao,Xuesong Li
出处
期刊:Remote Sensing [MDPI AG]
卷期号:16 (22): 4247-4247
标识
DOI:10.3390/rs16224247
摘要

Deep learning has made remarkable strides in hyperspectral image (HSI) classification, significantly improving classification performance. However, the challenge of obtaining accurately labeled training samples persists, primarily due to the subjectivity of human annotators and their limited domain knowledge. This often results in erroneous labels, commonly referred to as label noise. Such noisy labels can critically impair the performance of deep learning models, making it essential to address this issue. While previous studies focused on label noise filtering and label correction, these approaches often require estimating noise rates and may inadvertently propagate noisy labels to clean labels, especially in scenarios with high noise levels. In this study, we introduce an ensemble network-based distillation (END) method specifically designed to address the challenges posed by label noise in HSI classification. The core idea is to leverage multiple base neural networks to generate an estimated label distribution from the training data. This estimated distribution is then used alongside the ground-truth labels to train the target network effectively. Moreover, we propose a parameter-adaptive loss function that balances the impact of both the estimated and ground-truth label distributions during the training process. Our approach not only simplifies architectural requirements but also integrates seamlessly into existing deep learning frameworks. Comparative experiments on four hyperspectral datasets demonstrate the effectiveness of our method, highlighting its competitive performance in the presence of label noise.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhou发布了新的文献求助10
刚刚
1秒前
1秒前
笨蛋小章应助Howie采纳,获得20
1秒前
胡萝卜发布了新的文献求助10
2秒前
2秒前
CR7应助姜鸽采纳,获得20
2秒前
tt完成签到,获得积分10
3秒前
3秒前
3秒前
3秒前
3秒前
重要的鱼完成签到 ,获得积分10
4秒前
Pumpkin发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
屹舟发布了新的文献求助20
5秒前
6秒前
6秒前
香蕉斓发布了新的文献求助10
6秒前
6秒前
kbkyvuy发布了新的文献求助10
6秒前
7秒前
7秒前
华仔应助zyf采纳,获得10
7秒前
111发布了新的文献求助10
7秒前
favor完成签到,获得积分10
7秒前
华仔应助zhou采纳,获得30
7秒前
万能图书馆应助冷傲又菡采纳,获得10
7秒前
chenlechen发布了新的文献求助10
7秒前
8秒前
浮游应助落寞臻采纳,获得10
8秒前
浮游应助落寞臻采纳,获得10
8秒前
玮玮完成签到,获得积分10
8秒前
TRY发布了新的文献求助10
8秒前
8秒前
8秒前
9秒前
9秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Advanced Memory Technology: Functional Materials and Devices 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5692559
求助须知:如何正确求助?哪些是违规求助? 5089055
关于积分的说明 15208836
捐赠科研通 4849783
什么是DOI,文献DOI怎么找? 2601280
邀请新用户注册赠送积分活动 1553052
关于科研通互助平台的介绍 1511274