Ensemble Network-Based Distillation for Hyperspectral Image Classification in the Presence of Label Noise

高光谱成像 计算机科学 噪音(视频) 人工智能 模式识别(心理学) 图像(数学) 遥感 环境科学 地质学
作者
Youqiang Zhang,Ding Ren,Hao Shi,Jiaxi Liu,Qiqiong Yu,Guo Cao,Xuesong Li
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:16 (22): 4247-4247
标识
DOI:10.3390/rs16224247
摘要

Deep learning has made remarkable strides in hyperspectral image (HSI) classification, significantly improving classification performance. However, the challenge of obtaining accurately labeled training samples persists, primarily due to the subjectivity of human annotators and their limited domain knowledge. This often results in erroneous labels, commonly referred to as label noise. Such noisy labels can critically impair the performance of deep learning models, making it essential to address this issue. While previous studies focused on label noise filtering and label correction, these approaches often require estimating noise rates and may inadvertently propagate noisy labels to clean labels, especially in scenarios with high noise levels. In this study, we introduce an ensemble network-based distillation (END) method specifically designed to address the challenges posed by label noise in HSI classification. The core idea is to leverage multiple base neural networks to generate an estimated label distribution from the training data. This estimated distribution is then used alongside the ground-truth labels to train the target network effectively. Moreover, we propose a parameter-adaptive loss function that balances the impact of both the estimated and ground-truth label distributions during the training process. Our approach not only simplifies architectural requirements but also integrates seamlessly into existing deep learning frameworks. Comparative experiments on four hyperspectral datasets demonstrate the effectiveness of our method, highlighting its competitive performance in the presence of label noise.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
废羊羊完成签到 ,获得积分10
刚刚
小魏哥完成签到,获得积分10
刚刚
allzzwell完成签到 ,获得积分10
1秒前
沛沛完成签到,获得积分10
1秒前
英勇雅琴完成签到,获得积分10
1秒前
2秒前
小太阳红红火火完成签到,获得积分10
2秒前
加载文献别卡了完成签到,获得积分10
3秒前
傻傻的咖啡豆完成签到,获得积分10
3秒前
沉默的尔槐完成签到,获得积分10
3秒前
孙皓然完成签到 ,获得积分10
3秒前
4秒前
小超人到海底捉虫完成签到,获得积分10
5秒前
LZL完成签到 ,获得积分10
6秒前
窝窝头完成签到,获得积分10
6秒前
7秒前
薄荷味完成签到 ,获得积分10
8秒前
moxisi完成签到,获得积分10
8秒前
8秒前
11秒前
XieQinxie发布了新的文献求助10
11秒前
zyc1111111应助司空蓝采纳,获得20
13秒前
情怀应助111采纳,获得10
13秒前
美海与鱼完成签到,获得积分10
13秒前
顺顺利利完成签到,获得积分10
13秒前
111完成签到,获得积分10
13秒前
14秒前
典雅葶完成签到 ,获得积分10
14秒前
斯奈克发布了新的文献求助10
14秒前
POWER完成签到,获得积分10
17秒前
11完成签到,获得积分20
17秒前
Hello应助pufanlg采纳,获得10
17秒前
美丽凡阳完成签到,获得积分10
18秒前
科研顺利完成签到,获得积分10
18秒前
撑住完成签到,获得积分10
19秒前
聆琳完成签到 ,获得积分10
19秒前
汤圆完成签到,获得积分10
20秒前
Spiderman完成签到,获得积分10
20秒前
21秒前
丘比特应助znaaaa采纳,获得10
21秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008933
求助须知:如何正确求助?哪些是违规求助? 3548669
关于积分的说明 11299538
捐赠科研通 3283228
什么是DOI,文献DOI怎么找? 1810311
邀请新用户注册赠送积分活动 886034
科研通“疑难数据库(出版商)”最低求助积分说明 811259