Ensemble Network-Based Distillation for Hyperspectral Image Classification in the Presence of Label Noise

高光谱成像 计算机科学 噪音(视频) 人工智能 模式识别(心理学) 图像(数学) 遥感 环境科学 地质学
作者
Youqiang Zhang,Ding Ren,Hao Shi,Jiaxi Liu,Qiqiong Yu,Guo Cao,Xuesong Li
出处
期刊:Remote Sensing [MDPI AG]
卷期号:16 (22): 4247-4247
标识
DOI:10.3390/rs16224247
摘要

Deep learning has made remarkable strides in hyperspectral image (HSI) classification, significantly improving classification performance. However, the challenge of obtaining accurately labeled training samples persists, primarily due to the subjectivity of human annotators and their limited domain knowledge. This often results in erroneous labels, commonly referred to as label noise. Such noisy labels can critically impair the performance of deep learning models, making it essential to address this issue. While previous studies focused on label noise filtering and label correction, these approaches often require estimating noise rates and may inadvertently propagate noisy labels to clean labels, especially in scenarios with high noise levels. In this study, we introduce an ensemble network-based distillation (END) method specifically designed to address the challenges posed by label noise in HSI classification. The core idea is to leverage multiple base neural networks to generate an estimated label distribution from the training data. This estimated distribution is then used alongside the ground-truth labels to train the target network effectively. Moreover, we propose a parameter-adaptive loss function that balances the impact of both the estimated and ground-truth label distributions during the training process. Our approach not only simplifies architectural requirements but also integrates seamlessly into existing deep learning frameworks. Comparative experiments on four hyperspectral datasets demonstrate the effectiveness of our method, highlighting its competitive performance in the presence of label noise.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助胡大嘴先生采纳,获得10
刚刚
刚刚
桐桐应助迷人的爆米花采纳,获得10
1秒前
1秒前
恶毒的婆婆完成签到,获得积分10
1秒前
2秒前
zszz完成签到 ,获得积分10
2秒前
3秒前
达文西完成签到,获得积分10
3秒前
XBJ发布了新的文献求助10
4秒前
艾七七发布了新的文献求助10
4秒前
方汀发布了新的文献求助30
4秒前
华仔应助自由的中蓝采纳,获得10
4秒前
科研通AI6应助缥缈树叶采纳,获得20
5秒前
yy完成签到,获得积分10
5秒前
学术虫完成签到,获得积分10
6秒前
7秒前
小可发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
nsk发布了新的文献求助10
8秒前
8秒前
向阳而生完成签到,获得积分10
8秒前
8秒前
66完成签到,获得积分10
8秒前
8秒前
小蘑菇应助孙木楠采纳,获得10
8秒前
8秒前
9秒前
9秒前
11秒前
爆米花应助Mar采纳,获得10
11秒前
领导范儿应助松子采纳,获得10
11秒前
酷波er应助小畅采纳,获得10
12秒前
SciGPT应助BH采纳,获得10
12秒前
疯狂的寻绿完成签到,获得积分10
12秒前
花花发布了新的文献求助10
12秒前
13秒前
13秒前
shaft发布了新的文献求助20
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5660641
求助须知:如何正确求助?哪些是违规求助? 4835016
关于积分的说明 15091506
捐赠科研通 4819242
什么是DOI,文献DOI怎么找? 2579181
邀请新用户注册赠送积分活动 1533670
关于科研通互助平台的介绍 1492441