机器人
灵活性(工程)
工程类
工作量
自主机器人
农业工程
模拟
计算机科学
移动机器人
控制工程
人工智能
操作系统
统计
数学
摘要
Urbanization is accelerating, which has highlighted the need for plant conservation in a number of areas, including agricultural output, urban greening, and horticulture maintenance. However, there are a number of significant disadvantages to the traditional watering methods used in these locations, such as waste of water resources, low efficiency, and environmental degradation. As such, the creation and application of intelligent autonomous watering robots has become an important field of current research. In order to tackle the urgent problems related to plant watering, this paper provides a thorough analysis of the mechanical structural design of such robots. This research's main goal is to present a thorough explanation of the mechanical design of an intelligent, autonomous watering robot. An inventive, autonomous watering robot with a unique mechanical construction is painstakingly researched and built using SolidWorks modeling technology. Because of its special design, the robot can move with amazing freedom and agility through agricultural areas, green spaces, and gardening fields. It can also accurately irrigate plants by combining six-axis manipulator operation with orbital mobility. Its mechanical structure also demonstrates remarkable flexibility and adaptation, which enables it to meet the different watering needs of different plant species and environmental circumstances while remaining sturdy and dependable. The study illustrates the observable advantages of using these robots in real-world settings through extensive empirical testing. The robot notably lessens the labor-intensive manual workload related to watering plants, which boosts output and effectiveness. Moreover, using it results in a significant reduction in the waste of water resources, supporting environmental preservation initiatives and sustainable development objectives. To sum up, the innovative development of intelligent automatic watering robots signifies a noteworthy progress in the realm of plant preservation. These robots are vital to the advancement of sustainable development and environmental stewardship because they provide an efficient solution for agricultural production, urban greening, and horticultural maintenance.
科研通智能强力驱动
Strongly Powered by AbleSci AI