亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A clinical–radiomics model based on noncontrast computed tomography to predict hemorrhagic transformation after stroke by machine learning: a multicenter study

医学 无线电技术 神经组阅片室 接收机工作特性 溶栓 队列 放射科 介入放射学 人工智能 机器学习 内科学 神经学 计算机科学 精神科 心肌梗塞
作者
Huanhuan Ren,Haojie Song,Jingjie Wang,Hua Xiong,Bangyuan Long,Meilin Gong,Jiayang Liu,Zhanping He,Li Liu,Xili Jiang,Lifeng Li,Hanjian Li,Shaoguo Cui,Yongmei Li
出处
期刊:Insights Into Imaging [Springer Nature]
卷期号:14 (1) 被引量:24
标识
DOI:10.1186/s13244-023-01399-5
摘要

To build a clinical-radiomics model based on noncontrast computed tomography images to identify the risk of hemorrhagic transformation (HT) in patients with acute ischemic stroke (AIS) following intravenous thrombolysis (IVT).A total of 517 consecutive patients with AIS were screened for inclusion. Datasets from six hospitals were randomly divided into a training cohort and an internal cohort with an 8:2 ratio. The dataset of the seventh hospital was used for an independent external verification. The best dimensionality reduction method to choose features and the best machine learning (ML) algorithm to develop a model were selected. Then, the clinical, radiomics and clinical-radiomics models were developed. Finally, the performance of the models was measured using the area under the receiver operating characteristic curve (AUC).Of 517 from seven hospitals, 249 (48%) had HT. The best method for choosing features was recursive feature elimination, and the best ML algorithm to build models was extreme gradient boosting. In distinguishing patients with HT, the AUC of the clinical model was 0.898 (95% CI 0.873-0.921) in the internal validation cohort, and 0.911 (95% CI 0.891-0.928) in the external validation cohort; the AUC of radiomics model was 0.922 (95% CI 0.896-0.941) and 0.883 (95% CI 0.851-0.902), while the AUC of clinical-radiomics model was 0.950 (95% CI 0.925-0.967) and 0.942 (95% CI 0.927-0.958) respectively.The proposed clinical-radiomics model is a dependable approach that could provide risk assessment of HT for patients who receive IVT after stroke.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
Jankin完成签到 ,获得积分10
6秒前
Fan应助lhr采纳,获得10
13秒前
顾矜应助lhr采纳,获得10
13秒前
19秒前
PP完成签到,获得积分10
20秒前
YifanWang应助科研通管家采纳,获得30
26秒前
YifanWang应助科研通管家采纳,获得30
26秒前
YifanWang应助科研通管家采纳,获得30
26秒前
YifanWang应助科研通管家采纳,获得30
26秒前
科研通AI2S应助科研通管家采纳,获得10
26秒前
YifanWang应助科研通管家采纳,获得30
26秒前
丘比特应助木昜采纳,获得10
32秒前
35秒前
46秒前
51秒前
如意蚂蚁发布了新的文献求助10
51秒前
55秒前
1分钟前
Jasper应助Karol采纳,获得10
1分钟前
Raunio完成签到,获得积分10
1分钟前
Criminology34举报旺旺雪饼求助涉嫌违规
1分钟前
1分钟前
1分钟前
Gossip完成签到,获得积分10
1分钟前
1分钟前
Gossip发布了新的文献求助30
1分钟前
1分钟前
ttxxcdx完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
Fan应助fuyaoye2010采纳,获得10
2分钟前
赘婿应助科研通管家采纳,获得10
2分钟前
YifanWang应助科研通管家采纳,获得30
2分钟前
YifanWang应助科研通管家采纳,获得30
2分钟前
2分钟前
YifanWang应助科研通管家采纳,获得30
2分钟前
YifanWang应助科研通管家采纳,获得30
2分钟前
2分钟前
莫miang完成签到,获得积分10
2分钟前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5746780
求助须知:如何正确求助?哪些是违规求助? 5438963
关于积分的说明 15355882
捐赠科研通 4886788
什么是DOI,文献DOI怎么找? 2627441
邀请新用户注册赠送积分活动 1575905
关于科研通互助平台的介绍 1532642