A clinical–radiomics model based on noncontrast computed tomography to predict hemorrhagic transformation after stroke by machine learning: a multicenter study

医学 无线电技术 神经组阅片室 接收机工作特性 溶栓 队列 放射科 介入放射学 人工智能 机器学习 内科学 神经学 计算机科学 精神科 心肌梗塞
作者
Huanhuan Ren,Haojie Song,Li Wang,Hua Xiong,Bangyuan Long,Meilin Gong,Jiayang Liu,Zhanping He,Li Liu,Xili Jiang,Lifeng Li,Hanjian Li,Shaoguo Cui,Yongmei Li
出处
期刊:Insights Into Imaging [Springer Nature]
卷期号:14 (1) 被引量:9
标识
DOI:10.1186/s13244-023-01399-5
摘要

To build a clinical-radiomics model based on noncontrast computed tomography images to identify the risk of hemorrhagic transformation (HT) in patients with acute ischemic stroke (AIS) following intravenous thrombolysis (IVT).A total of 517 consecutive patients with AIS were screened for inclusion. Datasets from six hospitals were randomly divided into a training cohort and an internal cohort with an 8:2 ratio. The dataset of the seventh hospital was used for an independent external verification. The best dimensionality reduction method to choose features and the best machine learning (ML) algorithm to develop a model were selected. Then, the clinical, radiomics and clinical-radiomics models were developed. Finally, the performance of the models was measured using the area under the receiver operating characteristic curve (AUC).Of 517 from seven hospitals, 249 (48%) had HT. The best method for choosing features was recursive feature elimination, and the best ML algorithm to build models was extreme gradient boosting. In distinguishing patients with HT, the AUC of the clinical model was 0.898 (95% CI 0.873-0.921) in the internal validation cohort, and 0.911 (95% CI 0.891-0.928) in the external validation cohort; the AUC of radiomics model was 0.922 (95% CI 0.896-0.941) and 0.883 (95% CI 0.851-0.902), while the AUC of clinical-radiomics model was 0.950 (95% CI 0.925-0.967) and 0.942 (95% CI 0.927-0.958) respectively.The proposed clinical-radiomics model is a dependable approach that could provide risk assessment of HT for patients who receive IVT after stroke.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Cassie应助科研通管家采纳,获得10
刚刚
小滨发布了新的文献求助10
1秒前
隐形曼青应助奇奇吃面采纳,获得10
2秒前
kaustal完成签到,获得积分10
3秒前
妮子要学习完成签到,获得积分10
3秒前
xjtuwang0618完成签到,获得积分10
5秒前
6秒前
xiaosu完成签到,获得积分10
8秒前
年轻有为派大星完成签到,获得积分20
8秒前
10秒前
lss发布了新的文献求助10
16秒前
XYZ发布了新的文献求助10
17秒前
杨晓柳完成签到,获得积分10
21秒前
共享精神应助XYZ采纳,获得10
22秒前
lss完成签到,获得积分10
22秒前
lihn完成签到,获得积分10
24秒前
张宁波完成签到,获得积分10
24秒前
99giddens举报中午求助涉嫌违规
25秒前
稞小弟完成签到,获得积分10
25秒前
yjchenf完成签到 ,获得积分10
26秒前
28秒前
Joanna完成签到,获得积分10
30秒前
哇咔咔发布了新的文献求助10
32秒前
舒云易烟完成签到,获得积分10
33秒前
A晨完成签到 ,获得积分10
34秒前
35秒前
Axeliar完成签到,获得积分10
38秒前
何劲松完成签到,获得积分10
40秒前
好样的发布了新的文献求助10
42秒前
42秒前
鄙人不善奔跑完成签到,获得积分10
43秒前
XYZ发布了新的文献求助10
45秒前
wenhuanwenxian完成签到 ,获得积分10
48秒前
哇咔咔完成签到 ,获得积分10
50秒前
luo完成签到 ,获得积分10
51秒前
博林大师完成签到,获得积分10
51秒前
man完成签到,获得积分10
55秒前
55秒前
56秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137575
求助须知:如何正确求助?哪些是违规求助? 2788520
关于积分的说明 7787428
捐赠科研通 2444861
什么是DOI,文献DOI怎么找? 1300110
科研通“疑难数据库(出版商)”最低求助积分说明 625813
版权声明 601023