Risk prediction models for breast cancer-related lymphedema: A systematic review and meta-analysis

医学 荟萃分析 乳腺癌 肿瘤科 科克伦图书馆 数据提取 奇纳 梅德林 内科学 癌症 心理干预 精神科 政治学 法学
作者
Aomei Shen,Xiaoxia Wei,Fei Zhu,Mengying Sun,Sangsang Ke,Wanmin Qiang,Qian Lü
出处
期刊:European Journal of Oncology Nursing [Elsevier]
卷期号:64: 102326-102326 被引量:10
标识
DOI:10.1016/j.ejon.2023.102326
摘要

Purpose To review and critically evaluate currently available risk prediction models for breast cancer-related lymphedema (BCRL). Methods PubMed, Embase, CINAHL, Scopus, Web of Science, the Cochrane Library, CNKI, SinoMed, WangFang Data, VIP Database were searched from inception to April 1, 2022, and updated on November 8, 2022. Study selection, data extraction and quality assessment were conducted by two independent reviewers. The Prediction Model Risk of Bias Assessment Tool was used to assess the risk of bias and applicability. Meta-analysis of AUC values of model external validations was performed using Stata 17.0. Results Twenty-one studies were included, reporting twenty-two prediction models, with the AUC or C-index ranging from 0.601 to 0.965. Only two models were externally validated, with the pooled AUC of 0.70 (n = 3, 95%CI: 0.67 to 0.74), and 0.80 (n = 3, 95%CI: 0.75 to 0.86), respectively. Most models were developed using classical regression methods, with two studies using machine learning. Predictors most frequently used in included models were radiotherapy, body mass index before surgery, number of lymph nodes dissected, and chemotherapy. All studies were judged as high overall risk of bias and poorly reported. Conclusions Current models for predicting BCRL showed moderate to good predictive performance. However, all models were at high risk of bias and poorly reported, and their performance is probably optimistic. None of these models is suitable for recommendation in clinical practice. Future research should focus on validating, optimizing, or developing new models in well-designed and reported studies, following the methodology guidance and reporting guidelines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qiu发布了新的文献求助10
1秒前
shennie完成签到,获得积分20
1秒前
单纯的访风完成签到,获得积分10
2秒前
爆米花应助feng采纳,获得10
2秒前
装饭的桶完成签到,获得积分10
4秒前
小杭76应助KFCjiji采纳,获得10
4秒前
传奇3应助xfye采纳,获得20
5秒前
浮游应助qiu采纳,获得10
5秒前
gong完成签到,获得积分10
6秒前
英姑应助xu采纳,获得10
6秒前
6秒前
7秒前
7秒前
8秒前
8秒前
9秒前
ying完成签到,获得积分10
10秒前
星辰大海应助无限的代萱采纳,获得10
11秒前
传奇3应助CTCTCT6采纳,获得10
11秒前
11秒前
Anna发布了新的文献求助10
11秒前
龙龙冲发布了新的文献求助10
12秒前
芋头发布了新的文献求助10
12秒前
13秒前
锂享生活发布了新的文献求助10
15秒前
Tonson发布了新的文献求助10
15秒前
ding应助PG采纳,获得10
15秒前
jbfhjm发布了新的文献求助10
16秒前
16秒前
ding应助YY采纳,获得10
16秒前
欣慰雪巧发布了新的文献求助10
16秒前
所所应助资浩阑采纳,获得10
17秒前
17秒前
17秒前
Joey发布了新的文献求助10
18秒前
华仔应助as采纳,获得10
18秒前
燕儿完成签到 ,获得积分10
19秒前
19秒前
毛鹤翔发布了新的文献求助10
20秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424904
求助须知:如何正确求助?哪些是违规求助? 4539183
关于积分的说明 14165914
捐赠科研通 4456291
什么是DOI,文献DOI怎么找? 2444084
邀请新用户注册赠送积分活动 1435170
关于科研通互助平台的介绍 1412492