亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Risk prediction models for breast cancer-related lymphedema: A systematic review and meta-analysis

医学 荟萃分析 乳腺癌 肿瘤科 科克伦图书馆 数据提取 奇纳 梅德林 内科学 癌症 心理干预 精神科 政治学 法学
作者
Aomei Shen,Xiaoxia Wei,Fei Zhu,Mengying Sun,Sangsang Ke,Wanmin Qiang,Qian Lü
出处
期刊:European Journal of Oncology Nursing [Elsevier]
卷期号:64: 102326-102326 被引量:10
标识
DOI:10.1016/j.ejon.2023.102326
摘要

Purpose To review and critically evaluate currently available risk prediction models for breast cancer-related lymphedema (BCRL). Methods PubMed, Embase, CINAHL, Scopus, Web of Science, the Cochrane Library, CNKI, SinoMed, WangFang Data, VIP Database were searched from inception to April 1, 2022, and updated on November 8, 2022. Study selection, data extraction and quality assessment were conducted by two independent reviewers. The Prediction Model Risk of Bias Assessment Tool was used to assess the risk of bias and applicability. Meta-analysis of AUC values of model external validations was performed using Stata 17.0. Results Twenty-one studies were included, reporting twenty-two prediction models, with the AUC or C-index ranging from 0.601 to 0.965. Only two models were externally validated, with the pooled AUC of 0.70 (n = 3, 95%CI: 0.67 to 0.74), and 0.80 (n = 3, 95%CI: 0.75 to 0.86), respectively. Most models were developed using classical regression methods, with two studies using machine learning. Predictors most frequently used in included models were radiotherapy, body mass index before surgery, number of lymph nodes dissected, and chemotherapy. All studies were judged as high overall risk of bias and poorly reported. Conclusions Current models for predicting BCRL showed moderate to good predictive performance. However, all models were at high risk of bias and poorly reported, and their performance is probably optimistic. None of these models is suitable for recommendation in clinical practice. Future research should focus on validating, optimizing, or developing new models in well-designed and reported studies, following the methodology guidance and reporting guidelines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
8秒前
李健应助孤独的送终采纳,获得10
14秒前
科研通AI6.1应助科研通管家采纳,获得200
18秒前
科研通AI6应助科研通管家采纳,获得10
18秒前
长言完成签到 ,获得积分10
21秒前
飞常爱你哦完成签到,获得积分10
39秒前
ok发布了新的文献求助10
40秒前
研友_VZG7GZ应助meiyi采纳,获得10
49秒前
少年锦时完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
桃子e发布了新的文献求助10
1分钟前
jiangx完成签到,获得积分10
1分钟前
1分钟前
手可摘星陈同学完成签到 ,获得积分10
1分钟前
jiangx发布了新的文献求助10
1分钟前
2分钟前
领导范儿应助科研通管家采纳,获得10
2分钟前
NattyPoe应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
啵子发布了新的文献求助10
2分钟前
丘比特应助ok采纳,获得10
2分钟前
2分钟前
我是老大应助六子采纳,获得10
2分钟前
美满尔蓝完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
1234发布了新的文献求助10
3分钟前
3分钟前
3分钟前
谈理想发布了新的文献求助20
3分钟前
ok发布了新的文献求助10
3分钟前
六子发布了新的文献求助10
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5780317
求助须知:如何正确求助?哪些是违规求助? 5654644
关于积分的说明 15453043
捐赠科研通 4911039
什么是DOI,文献DOI怎么找? 2643222
邀请新用户注册赠送积分活动 1590873
关于科研通互助平台的介绍 1545379