Risk prediction models for breast cancer-related lymphedema: A systematic review and meta-analysis

医学 荟萃分析 乳腺癌 肿瘤科 科克伦图书馆 数据提取 奇纳 梅德林 内科学 癌症 心理干预 精神科 政治学 法学
作者
Aomei Shen,Xiaoxia Wei,Fei Zhu,Mengying Sun,Sangsang Ke,Wanmin Qiang,Qian Lü
出处
期刊:European Journal of Oncology Nursing [Elsevier BV]
卷期号:64: 102326-102326 被引量:10
标识
DOI:10.1016/j.ejon.2023.102326
摘要

Purpose To review and critically evaluate currently available risk prediction models for breast cancer-related lymphedema (BCRL). Methods PubMed, Embase, CINAHL, Scopus, Web of Science, the Cochrane Library, CNKI, SinoMed, WangFang Data, VIP Database were searched from inception to April 1, 2022, and updated on November 8, 2022. Study selection, data extraction and quality assessment were conducted by two independent reviewers. The Prediction Model Risk of Bias Assessment Tool was used to assess the risk of bias and applicability. Meta-analysis of AUC values of model external validations was performed using Stata 17.0. Results Twenty-one studies were included, reporting twenty-two prediction models, with the AUC or C-index ranging from 0.601 to 0.965. Only two models were externally validated, with the pooled AUC of 0.70 (n = 3, 95%CI: 0.67 to 0.74), and 0.80 (n = 3, 95%CI: 0.75 to 0.86), respectively. Most models were developed using classical regression methods, with two studies using machine learning. Predictors most frequently used in included models were radiotherapy, body mass index before surgery, number of lymph nodes dissected, and chemotherapy. All studies were judged as high overall risk of bias and poorly reported. Conclusions Current models for predicting BCRL showed moderate to good predictive performance. However, all models were at high risk of bias and poorly reported, and their performance is probably optimistic. None of these models is suitable for recommendation in clinical practice. Future research should focus on validating, optimizing, or developing new models in well-designed and reported studies, following the methodology guidance and reporting guidelines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
BLAZe完成签到 ,获得积分10
刚刚
Sandy完成签到,获得积分10
刚刚
科研通AI6应助漂亮忆丹采纳,获得10
1秒前
我是老大应助乖猫要努力采纳,获得10
1秒前
1秒前
兰666完成签到,获得积分10
1秒前
见龙在田完成签到,获得积分10
2秒前
Leo完成签到,获得积分10
2秒前
binbin应助怕孤独的冰淇淋采纳,获得20
2秒前
孤独的珩完成签到,获得积分10
2秒前
慕容醉蓝应助文献互助1采纳,获得20
3秒前
llly完成签到,获得积分10
3秒前
3秒前
3秒前
希望天下0贩的0应助66采纳,获得10
3秒前
南北完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
ww完成签到,获得积分10
4秒前
胡楠完成签到,获得积分10
4秒前
wangnn完成签到,获得积分10
4秒前
5秒前
Ava应助小熊采纳,获得10
5秒前
平凡完成签到,获得积分10
5秒前
5秒前
小吃货完成签到,获得积分10
6秒前
无限黎云发布了新的文献求助10
6秒前
旷野完成签到,获得积分10
7秒前
lyn完成签到,获得积分10
7秒前
若俗人发布了新的文献求助10
7秒前
7秒前
隐形冷亦完成签到 ,获得积分10
8秒前
清茶旧友完成签到,获得积分10
9秒前
墨尔根戴青完成签到,获得积分10
9秒前
咖飞完成签到,获得积分10
9秒前
小曹完成签到,获得积分10
9秒前
坦率晓霜完成签到,获得积分10
10秒前
科研醉汉完成签到,获得积分10
10秒前
酷波er应助ffiu采纳,获得10
10秒前
juntang完成签到,获得积分10
11秒前
黄黄完成签到,获得积分10
11秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
Psychology for Teachers 220
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4598273
求助须知:如何正确求助?哪些是违规求助? 4009452
关于积分的说明 12411277
捐赠科研通 3688841
什么是DOI,文献DOI怎么找? 2033499
邀请新用户注册赠送积分活动 1066749
科研通“疑难数据库(出版商)”最低求助积分说明 951856