Risk prediction models for breast cancer-related lymphedema: A systematic review and meta-analysis

医学 荟萃分析 乳腺癌 肿瘤科 科克伦图书馆 数据提取 奇纳 梅德林 内科学 癌症 心理干预 政治学 精神科 法学
作者
Aomei Shen,Xiaoxia Wei,Fei Zhu,Mengying Sun,Sangsang Ke,Wanmin Qiang,Qian Lü
出处
期刊:European Journal of Oncology Nursing [Elsevier BV]
卷期号:64: 102326-102326 被引量:10
标识
DOI:10.1016/j.ejon.2023.102326
摘要

Purpose To review and critically evaluate currently available risk prediction models for breast cancer-related lymphedema (BCRL). Methods PubMed, Embase, CINAHL, Scopus, Web of Science, the Cochrane Library, CNKI, SinoMed, WangFang Data, VIP Database were searched from inception to April 1, 2022, and updated on November 8, 2022. Study selection, data extraction and quality assessment were conducted by two independent reviewers. The Prediction Model Risk of Bias Assessment Tool was used to assess the risk of bias and applicability. Meta-analysis of AUC values of model external validations was performed using Stata 17.0. Results Twenty-one studies were included, reporting twenty-two prediction models, with the AUC or C-index ranging from 0.601 to 0.965. Only two models were externally validated, with the pooled AUC of 0.70 (n = 3, 95%CI: 0.67 to 0.74), and 0.80 (n = 3, 95%CI: 0.75 to 0.86), respectively. Most models were developed using classical regression methods, with two studies using machine learning. Predictors most frequently used in included models were radiotherapy, body mass index before surgery, number of lymph nodes dissected, and chemotherapy. All studies were judged as high overall risk of bias and poorly reported. Conclusions Current models for predicting BCRL showed moderate to good predictive performance. However, all models were at high risk of bias and poorly reported, and their performance is probably optimistic. None of these models is suitable for recommendation in clinical practice. Future research should focus on validating, optimizing, or developing new models in well-designed and reported studies, following the methodology guidance and reporting guidelines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Star完成签到,获得积分10
刚刚
热心市民小红花应助7123采纳,获得10
刚刚
1秒前
1秒前
LaTeXer应助chana采纳,获得50
3秒前
3秒前
4秒前
神经娃完成签到,获得积分10
4秒前
snowdream完成签到,获得积分10
5秒前
shiyu发布了新的文献求助10
5秒前
Akim应助happiness采纳,获得10
5秒前
Queena完成签到,获得积分10
5秒前
何先生发布了新的文献求助10
6秒前
2y完成签到,获得积分10
6秒前
6秒前
7秒前
Lucas应助li采纳,获得10
8秒前
Jasper应助DK采纳,获得10
10秒前
完美世界应助111采纳,获得10
11秒前
隐形曼青应助111采纳,获得10
11秒前
Aurora完成签到 ,获得积分10
13秒前
hhl完成签到,获得积分10
13秒前
14秒前
安静严青发布了新的文献求助10
14秒前
思源应助shiyu采纳,获得10
14秒前
正无穷完成签到,获得积分10
15秒前
15秒前
阳阿儿完成签到,获得积分10
15秒前
15秒前
细心灭龙完成签到,获得积分10
17秒前
17秒前
Melrose完成签到,获得积分10
18秒前
18秒前
机灵曼青完成签到 ,获得积分10
19秒前
19秒前
happiness发布了新的文献求助10
19秒前
贪玩的芸发布了新的文献求助10
20秒前
20秒前
乐乐应助聪明尔白采纳,获得10
20秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954275
求助须知:如何正确求助?哪些是违规求助? 3500311
关于积分的说明 11098873
捐赠科研通 3230815
什么是DOI,文献DOI怎么找? 1786149
邀请新用户注册赠送积分活动 869840
科研通“疑难数据库(出版商)”最低求助积分说明 801651