Risk prediction models for breast cancer-related lymphedema: A systematic review and meta-analysis

医学 荟萃分析 乳腺癌 肿瘤科 科克伦图书馆 数据提取 奇纳 梅德林 内科学 癌症 心理干预 政治学 精神科 法学
作者
Aomei Shen,Xiaoxia Wei,Fei Zhu,Mengying Sun,Sangsang Ke,Wanmin Qiang,Qian Lü
出处
期刊:European Journal of Oncology Nursing [Elsevier]
卷期号:64: 102326-102326 被引量:4
标识
DOI:10.1016/j.ejon.2023.102326
摘要

Purpose To review and critically evaluate currently available risk prediction models for breast cancer-related lymphedema (BCRL). Methods PubMed, Embase, CINAHL, Scopus, Web of Science, the Cochrane Library, CNKI, SinoMed, WangFang Data, VIP Database were searched from inception to April 1, 2022, and updated on November 8, 2022. Study selection, data extraction and quality assessment were conducted by two independent reviewers. The Prediction Model Risk of Bias Assessment Tool was used to assess the risk of bias and applicability. Meta-analysis of AUC values of model external validations was performed using Stata 17.0. Results Twenty-one studies were included, reporting twenty-two prediction models, with the AUC or C-index ranging from 0.601 to 0.965. Only two models were externally validated, with the pooled AUC of 0.70 (n = 3, 95%CI: 0.67 to 0.74), and 0.80 (n = 3, 95%CI: 0.75 to 0.86), respectively. Most models were developed using classical regression methods, with two studies using machine learning. Predictors most frequently used in included models were radiotherapy, body mass index before surgery, number of lymph nodes dissected, and chemotherapy. All studies were judged as high overall risk of bias and poorly reported. Conclusions Current models for predicting BCRL showed moderate to good predictive performance. However, all models were at high risk of bias and poorly reported, and their performance is probably optimistic. None of these models is suitable for recommendation in clinical practice. Future research should focus on validating, optimizing, or developing new models in well-designed and reported studies, following the methodology guidance and reporting guidelines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
勤劳的忆寒应助Kiyotaka采纳,获得30
刚刚
刚刚
爆米花应助towerman采纳,获得10
1秒前
羊笨笨完成签到 ,获得积分10
1秒前
2秒前
光亮芷天完成签到,获得积分10
2秒前
2秒前
3秒前
粗犷的问夏完成签到,获得积分10
4秒前
知行合一完成签到 ,获得积分10
5秒前
5秒前
6秒前
李爱国应助晨曦采纳,获得10
7秒前
0128lun发布了新的文献求助10
7秒前
phd发布了新的文献求助10
8秒前
君无名完成签到 ,获得积分10
8秒前
经年发布了新的文献求助10
8秒前
QXR完成签到,获得积分10
9秒前
豆dou完成签到,获得积分10
9秒前
Dddd发布了新的文献求助10
9秒前
HCl完成签到,获得积分10
10秒前
10秒前
11秒前
11秒前
12秒前
12秒前
Hollen完成签到 ,获得积分10
13秒前
慕青应助学术蠕虫采纳,获得10
14秒前
14秒前
叶子发布了新的文献求助10
15秒前
orangel完成签到,获得积分10
16秒前
半壶月色半边天完成签到 ,获得积分10
17秒前
tmpstlml发布了新的文献求助10
17秒前
18秒前
18秒前
不安饼干完成签到 ,获得积分10
20秒前
活泼的飞鸟完成签到,获得积分10
20秒前
21秒前
xuyun发布了新的文献求助10
21秒前
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808