Risk prediction models for breast cancer-related lymphedema: A systematic review and meta-analysis

医学 荟萃分析 乳腺癌 肿瘤科 科克伦图书馆 数据提取 奇纳 梅德林 内科学 癌症 心理干预 精神科 政治学 法学
作者
Aomei Shen,Xiaoxia Wei,Fei Zhu,Mengying Sun,Sangsang Ke,Wanmin Qiang,Qian Lü
出处
期刊:European Journal of Oncology Nursing [Elsevier]
卷期号:64: 102326-102326 被引量:4
标识
DOI:10.1016/j.ejon.2023.102326
摘要

Purpose To review and critically evaluate currently available risk prediction models for breast cancer-related lymphedema (BCRL). Methods PubMed, Embase, CINAHL, Scopus, Web of Science, the Cochrane Library, CNKI, SinoMed, WangFang Data, VIP Database were searched from inception to April 1, 2022, and updated on November 8, 2022. Study selection, data extraction and quality assessment were conducted by two independent reviewers. The Prediction Model Risk of Bias Assessment Tool was used to assess the risk of bias and applicability. Meta-analysis of AUC values of model external validations was performed using Stata 17.0. Results Twenty-one studies were included, reporting twenty-two prediction models, with the AUC or C-index ranging from 0.601 to 0.965. Only two models were externally validated, with the pooled AUC of 0.70 (n = 3, 95%CI: 0.67 to 0.74), and 0.80 (n = 3, 95%CI: 0.75 to 0.86), respectively. Most models were developed using classical regression methods, with two studies using machine learning. Predictors most frequently used in included models were radiotherapy, body mass index before surgery, number of lymph nodes dissected, and chemotherapy. All studies were judged as high overall risk of bias and poorly reported. Conclusions Current models for predicting BCRL showed moderate to good predictive performance. However, all models were at high risk of bias and poorly reported, and their performance is probably optimistic. None of these models is suitable for recommendation in clinical practice. Future research should focus on validating, optimizing, or developing new models in well-designed and reported studies, following the methodology guidance and reporting guidelines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cjj完成签到,获得积分10
1秒前
winterm发布了新的文献求助10
2秒前
taozhiqi完成签到 ,获得积分10
4秒前
冷傲老九完成签到,获得积分10
5秒前
xiangzq完成签到,获得积分10
5秒前
隐形曼青应助隐形之玉采纳,获得10
5秒前
7秒前
0x1orz完成签到,获得积分10
8秒前
研友_Z1x9ln完成签到,获得积分10
11秒前
15秒前
yehaidadao完成签到,获得积分10
16秒前
111发布了新的文献求助10
18秒前
hj456完成签到,获得积分10
19秒前
19秒前
SIRT1发布了新的文献求助10
19秒前
24秒前
泡泡驳回了今后应助
25秒前
NexusExplorer应助SIRT1采纳,获得10
26秒前
0128lun完成签到,获得积分10
26秒前
lhuh发布了新的文献求助10
27秒前
kyt完成签到 ,获得积分10
27秒前
隐形之玉发布了新的文献求助10
28秒前
yaoccccchen完成签到,获得积分10
29秒前
zhaoyang完成签到 ,获得积分10
29秒前
111完成签到,获得积分10
29秒前
慕青应助不许内耗采纳,获得10
34秒前
啦啦啦发布了新的文献求助10
34秒前
感谢有你完成签到 ,获得积分10
35秒前
稳重的山柏完成签到 ,获得积分20
36秒前
36秒前
yif完成签到 ,获得积分10
37秒前
sherry221应助strings采纳,获得20
37秒前
奇奇吃面发布了新的文献求助10
39秒前
小卷粉完成签到 ,获得积分10
43秒前
刘小天完成签到,获得积分10
43秒前
43秒前
46秒前
rhc完成签到,获得积分10
47秒前
yiyi131发布了新的文献求助10
48秒前
48秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137627
求助须知:如何正确求助?哪些是违规求助? 2788531
关于积分的说明 7787471
捐赠科研通 2444861
什么是DOI,文献DOI怎么找? 1300119
科研通“疑难数据库(出版商)”最低求助积分说明 625814
版权声明 601023