Risk prediction models for breast cancer-related lymphedema: A systematic review and meta-analysis

医学 荟萃分析 乳腺癌 肿瘤科 科克伦图书馆 数据提取 奇纳 梅德林 内科学 癌症 心理干预 精神科 政治学 法学
作者
Aomei Shen,Xiaoxia Wei,Fei Zhu,Mengying Sun,Sangsang Ke,Wanmin Qiang,Qian Lü
出处
期刊:European Journal of Oncology Nursing [Elsevier]
卷期号:64: 102326-102326 被引量:10
标识
DOI:10.1016/j.ejon.2023.102326
摘要

Purpose To review and critically evaluate currently available risk prediction models for breast cancer-related lymphedema (BCRL). Methods PubMed, Embase, CINAHL, Scopus, Web of Science, the Cochrane Library, CNKI, SinoMed, WangFang Data, VIP Database were searched from inception to April 1, 2022, and updated on November 8, 2022. Study selection, data extraction and quality assessment were conducted by two independent reviewers. The Prediction Model Risk of Bias Assessment Tool was used to assess the risk of bias and applicability. Meta-analysis of AUC values of model external validations was performed using Stata 17.0. Results Twenty-one studies were included, reporting twenty-two prediction models, with the AUC or C-index ranging from 0.601 to 0.965. Only two models were externally validated, with the pooled AUC of 0.70 (n = 3, 95%CI: 0.67 to 0.74), and 0.80 (n = 3, 95%CI: 0.75 to 0.86), respectively. Most models were developed using classical regression methods, with two studies using machine learning. Predictors most frequently used in included models were radiotherapy, body mass index before surgery, number of lymph nodes dissected, and chemotherapy. All studies were judged as high overall risk of bias and poorly reported. Conclusions Current models for predicting BCRL showed moderate to good predictive performance. However, all models were at high risk of bias and poorly reported, and their performance is probably optimistic. None of these models is suitable for recommendation in clinical practice. Future research should focus on validating, optimizing, or developing new models in well-designed and reported studies, following the methodology guidance and reporting guidelines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ashore完成签到,获得积分20
刚刚
高兴的天川完成签到 ,获得积分10
刚刚
杜晓倩发布了新的文献求助10
1秒前
Yxian发布了新的文献求助10
1秒前
1秒前
大气映冬发布了新的文献求助10
1秒前
Eina完成签到,获得积分10
2秒前
2秒前
log发布了新的文献求助10
3秒前
东方傲儿发布了新的文献求助10
3秒前
梅心发布了新的文献求助10
3秒前
朴素的寻真完成签到,获得积分10
3秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
ljh发布了新的文献求助10
5秒前
吴裙裙完成签到,获得积分20
5秒前
6秒前
6秒前
蓝天应助awaer采纳,获得10
7秒前
蓝天应助东方傲儿采纳,获得10
7秒前
灵巧冰露发布了新的文献求助10
7秒前
852应助明理念桃采纳,获得10
7秒前
7秒前
7秒前
8秒前
蓝天应助生命化育采纳,获得10
8秒前
8秒前
青山见我发布了新的文献求助10
8秒前
cfv发布了新的文献求助10
8秒前
大气映冬完成签到,获得积分10
9秒前
9秒前
Criminology34应助无zzz的人采纳,获得10
9秒前
烟花应助yz采纳,获得10
10秒前
10秒前
通通通发布了新的文献求助30
10秒前
10秒前
11秒前
贾哲宇完成签到,获得积分10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784558
求助须知:如何正确求助?哪些是违规求助? 5682922
关于积分的说明 15464566
捐赠科研通 4913664
什么是DOI,文献DOI怎么找? 2644848
邀请新用户注册赠送积分活动 1592770
关于科研通互助平台的介绍 1547187