Risk prediction models for breast cancer-related lymphedema: A systematic review and meta-analysis

医学 荟萃分析 乳腺癌 肿瘤科 科克伦图书馆 数据提取 奇纳 梅德林 内科学 癌症 心理干预 精神科 政治学 法学
作者
Aomei Shen,Xiaoxia Wei,Fei Zhu,Mengying Sun,Sangsang Ke,Wanmin Qiang,Qian Lü
出处
期刊:European Journal of Oncology Nursing [Elsevier]
卷期号:64: 102326-102326 被引量:10
标识
DOI:10.1016/j.ejon.2023.102326
摘要

Purpose To review and critically evaluate currently available risk prediction models for breast cancer-related lymphedema (BCRL). Methods PubMed, Embase, CINAHL, Scopus, Web of Science, the Cochrane Library, CNKI, SinoMed, WangFang Data, VIP Database were searched from inception to April 1, 2022, and updated on November 8, 2022. Study selection, data extraction and quality assessment were conducted by two independent reviewers. The Prediction Model Risk of Bias Assessment Tool was used to assess the risk of bias and applicability. Meta-analysis of AUC values of model external validations was performed using Stata 17.0. Results Twenty-one studies were included, reporting twenty-two prediction models, with the AUC or C-index ranging from 0.601 to 0.965. Only two models were externally validated, with the pooled AUC of 0.70 (n = 3, 95%CI: 0.67 to 0.74), and 0.80 (n = 3, 95%CI: 0.75 to 0.86), respectively. Most models were developed using classical regression methods, with two studies using machine learning. Predictors most frequently used in included models were radiotherapy, body mass index before surgery, number of lymph nodes dissected, and chemotherapy. All studies were judged as high overall risk of bias and poorly reported. Conclusions Current models for predicting BCRL showed moderate to good predictive performance. However, all models were at high risk of bias and poorly reported, and their performance is probably optimistic. None of these models is suitable for recommendation in clinical practice. Future research should focus on validating, optimizing, or developing new models in well-designed and reported studies, following the methodology guidance and reporting guidelines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
邓巧完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
科研通AI6.1应助Ice_zhao采纳,获得10
1秒前
1秒前
HH发布了新的文献求助10
1秒前
GIGGLE完成签到,获得积分20
1秒前
客厅狂欢完成签到,获得积分10
2秒前
zhang7jing发布了新的文献求助30
2秒前
田様应助坦率导师sw采纳,获得10
3秒前
Z先生发布了新的文献求助10
3秒前
英姑应助潇洒闭月采纳,获得10
5秒前
无花果应助lihailong采纳,获得10
5秒前
李佳笑完成签到,获得积分10
5秒前
小白加油发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
smottom应助LLJ采纳,获得10
8秒前
8秒前
likun_42完成签到,获得积分10
9秒前
9秒前
丘比特应助发sci的女人采纳,获得10
9秒前
上山打老虎完成签到,获得积分10
9秒前
小郭完成签到,获得积分10
10秒前
积极慕晴完成签到,获得积分10
11秒前
HH完成签到,获得积分20
12秒前
12秒前
12秒前
我是老大应助滴滴滴采纳,获得10
13秒前
leo0531完成签到 ,获得积分10
13秒前
杨文志发布了新的文献求助10
13秒前
ljy1111完成签到,获得积分10
13秒前
情怀应助Z1xq2K采纳,获得10
14秒前
Cyuan完成签到,获得积分10
14秒前
酷波er应助js采纳,获得10
15秒前
儒飞完成签到,获得积分10
15秒前
量子星尘发布了新的文献求助10
15秒前
15秒前
16秒前
Bosen完成签到,获得积分10
16秒前
清风明月完成签到 ,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Rare earth elements and their applications 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5766583
求助须知:如何正确求助?哪些是违规求助? 5565915
关于积分的说明 15413051
捐赠科研通 4900745
什么是DOI,文献DOI怎么找? 2636655
邀请新用户注册赠送积分活动 1584854
关于科研通互助平台的介绍 1540082