Contrastive learning in protein language space predicts interactions between drugs and protein targets

计算机科学 计算生物学 空格(标点符号) 生物 操作系统
作者
Rohit Singh,Samuel Sledzieski,Bryan D. Bryson,Lenore Cowen,Bonnie Berger
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [Proceedings of the National Academy of Sciences]
卷期号:120 (24) 被引量:108
标识
DOI:10.1073/pnas.2220778120
摘要

Sequence-based prediction of drug-target interactions has the potential to accelerate drug discovery by complementing experimental screens. Such computational prediction needs to be generalizable and scalable while remaining sensitive to subtle variations in the inputs. However, current computational techniques fail to simultaneously meet these goals, often sacrificing performance of one to achieve the others. We develop a deep learning model, ConPLex, successfully leveraging the advances in pretrained protein language models ("PLex") and employing a protein-anchored contrastive coembedding ("Con") to outperform state-of-the-art approaches. ConPLex achieves high accuracy, broad adaptivity to unseen data, and specificity against decoy compounds. It makes predictions of binding based on the distance between learned representations, enabling predictions at the scale of massive compound libraries and the human proteome. Experimental testing of 19 kinase-drug interaction predictions validated 12 interactions, including four with subnanomolar affinity, plus a strongly binding EPHB1 inhibitor (KD = 1.3 nM). Furthermore, ConPLex embeddings are interpretable, which enables us to visualize the drug-target embedding space and use embeddings to characterize the function of human cell-surface proteins. We anticipate that ConPLex will facilitate efficient drug discovery by making highly sensitive in silico drug screening feasible at the genome scale. ConPLex is available open source at https://ConPLex.csail.mit.edu.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Ziyi_Xu完成签到,获得积分10
2秒前
Xu完成签到,获得积分10
3秒前
木木杨完成签到,获得积分10
5秒前
打打应助龙卷风采纳,获得10
6秒前
沈华炜完成签到,获得积分10
7秒前
9秒前
小青椒完成签到,获得积分0
12秒前
霸气曼雁发布了新的文献求助10
14秒前
冷酷的啤酒完成签到,获得积分0
14秒前
liu发布了新的文献求助10
14秒前
Hunter完成签到,获得积分10
15秒前
22秒前
22秒前
24秒前
时尚的诗珊完成签到 ,获得积分10
26秒前
清爽的人龙完成签到 ,获得积分10
28秒前
fluttershy完成签到 ,获得积分10
32秒前
东京下雨lin完成签到,获得积分10
32秒前
guoli完成签到,获得积分10
33秒前
悦耳娩完成签到,获得积分10
41秒前
huang完成签到,获得积分10
41秒前
默默的完成签到 ,获得积分10
42秒前
QQ完成签到,获得积分10
43秒前
嘻嘻哈哈应助明理的以亦采纳,获得10
45秒前
屿溡完成签到,获得积分10
45秒前
45秒前
wxt完成签到,获得积分10
47秒前
Orange应助勇往直前采纳,获得10
48秒前
数乱了梨花完成签到 ,获得积分0
49秒前
huahua发布了新的文献求助10
50秒前
51秒前
55秒前
ken131完成签到 ,获得积分10
55秒前
舒服的灰狼完成签到,获得积分10
56秒前
阿白完成签到 ,获得积分10
57秒前
59秒前
博修完成签到,获得积分10
59秒前
huahua完成签到,获得积分10
1分钟前
东风压倒西风完成签到,获得积分10
1分钟前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Questioning sequences in the classroom 700
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5378541
求助须知:如何正确求助?哪些是违规求助? 4502955
关于积分的说明 14014761
捐赠科研通 4411567
什么是DOI,文献DOI怎么找? 2423362
邀请新用户注册赠送积分活动 1416284
关于科研通互助平台的介绍 1393703