Gender differences in anxiety and depressive symptomatology determined by network analysis in panic disorder

心理学 惊恐障碍 恐慌 焦虑 临床心理学 广场恐怖症 贝克焦虑量表 精神科 贝克抑郁量表
作者
Hyun-Ju Kim,Sang‐Hyuk Lee,Chongwon Pae
出处
期刊:Journal of Affective Disorders [Elsevier]
卷期号:337: 94-103 被引量:4
标识
DOI:10.1016/j.jad.2023.05.087
摘要

It has been suggested that gender differences in anxiety and depressive symptoms characterize panic disorder (PD) in terms of vulnerability to stressful life events, anxiety, depressive symptom patterns, and brain structure. However, few studies have investigated the gender differences in PD using a network approach.This study included 619 participants with PD (313 men). The Panic Disorder Severity Scale, Albany Panic and Phobia Questionnaire, and Beck Depression Inventory-II were used to evaluate symptomatology. To investigate the PD-related white matter (WM) neural correlates, tract-based spatial statistics were used. The PD-related clinical scales and WM neural correlates were included in the network analysis to identify associations between variables. To evaluate network differences between genders, network comparison tests were conducted.Our findings revealed that agoraphobia in men was the strongest central symptom. In addition, loss of pleasure, and not anxiety or panic symptoms, was the strongest central symptom in women with PD. The network comparison test revealed that the bridge strength score was higher in agoraphobia and tiredness in men and in self-criticalness in women. Furthermore, in the network that includes neural correlates of WM, the bridge strength score was higher in the cingulate gyrus WM in men and the cingulum hippocampus in women.Since this is a cross-sectional network study of PD patients, the causal relationship between interactions in this network analysis for both genders may not be accurately determined.Network structures of anxiety and depressive symptomatology and related WM neural correlates can differ according to gender in PD patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
su发布了新的文献求助10
刚刚
1秒前
KevinSun完成签到,获得积分10
2秒前
3秒前
合适颜完成签到,获得积分10
3秒前
Joy完成签到,获得积分10
4秒前
4秒前
5秒前
超帅的冰夏完成签到,获得积分10
5秒前
6秒前
SigRosa完成签到,获得积分10
6秒前
毛豆应助张志迪采纳,获得10
7秒前
LM完成签到,获得积分10
8秒前
8秒前
聆听发布了新的文献求助10
9秒前
Jasper应助内向平萱采纳,获得10
10秒前
10秒前
乐观寻雪完成签到,获得积分10
11秒前
秋逢萍完成签到,获得积分10
11秒前
白betty发布了新的文献求助10
13秒前
周琦完成签到,获得积分10
14秒前
风华正茂发布了新的文献求助10
15秒前
16秒前
芦荟柚子呀完成签到,获得积分20
16秒前
小二郎应助眯眯眼的代容采纳,获得30
17秒前
优雅的金连完成签到,获得积分10
17秒前
17秒前
学术狗完成签到,获得积分10
18秒前
CodeCraft应助黑土采纳,获得10
18秒前
18秒前
Owen应助zychaos采纳,获得10
19秒前
Ming完成签到 ,获得积分20
19秒前
ding应助小白采纳,获得10
19秒前
Chocolat_Chaud完成签到,获得积分10
20秒前
1433223完成签到,获得积分10
21秒前
21秒前
sunrase完成签到,获得积分10
22秒前
23秒前
WQ关注了科研通微信公众号
24秒前
24秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
The Bourse of Babylon: market quotations in the astronomical diaries of Babylonia 500
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3308821
求助须知:如何正确求助?哪些是违规求助? 2942271
关于积分的说明 8507774
捐赠科研通 2617189
什么是DOI,文献DOI怎么找? 1430004
科研通“疑难数据库(出版商)”最低求助积分说明 663969
邀请新用户注册赠送积分活动 649186