Y-Element Doping Improves the Electrochemical Performance and Structural Stability of Single-Crystal Lini0.8co0.1mn0.1o2 Cathode

阴极 兴奋剂 电化学 材料科学 单晶 光电子学 结晶学 化学 电极 物理化学
作者
Wenshi Zheng,Hao Wang,Shuangyan Lu,Heming He
标识
DOI:10.2139/ssrn.4464429
摘要

LiNi0.8Co0.1Mn0.1O2 (NMC811), a common cathode material for lithium-ion batteries, has received widespread attention for its superior performance in terms of high capacity and high energy density. However, polycrystalline NMC811 materials are prone to secondary particle rupture during long-term cycling, leading to the occurrence of problems such as rapid capacity decay and poor stability. Single-crystal NCM811 has eliminated the occurrence of secondary particle crushing problems. However, since single-crystal materials have larger grain sizes, the ion transport path inside the crystal is longer, resulting in a slower ion diffusion rate inside the material, which is one of the main reasons why the capacity of single-crystal is always smaller than that of polycrystal at the conventional cut-off voltage (4.3V). It is an effective way to improve the capacity of single-crystal materials by increasing the voltage of charge/discharge to increase the diffusion rate of li ions. However, high cut-off voltages can lead to excessive Li+ detachment at the edge of the crystal, which in turn can easily cause Li layer collapse and impede the internal Li entry and exit, eventually causing irreparable and permanent losses. In this paper, we propose to improve the stability of NMC811 single crystal cathode material under high cut-off voltage by Y doping, which occupies the transition metal sites of the material and forms high bonding energy Y-O bonds, improving the stability of the overall structure of the crystal, so that the Li layer can remain stable and not collapse when highly delithiated. However, excessive doping will cause the reduction of lattice spacing due to too many Y-O bonds, which will hinder the diffusion of Li+. Through a series of characterization analyses, it was found that 0.5% Y doping could retain a large lattice spacing and maintain the stability of the lattice Li layer after extensive delithiation. The capacity retention of the optimized 0.5% Y-doped sample reached 94.53% after 100 cycles at 2.7 ~4.5 V voltage window, while the capacity retention of the original sample was only 81.25%. The experimental results show that this modified material has better stability and higher capacity retention under long cycles. In this study, the crystal structure of NMC811 was modulated by Y-doping to improve its stability at high cut-off voltage, which provides a new idea for the performance tuning of high nickel single-crystal materials. This work provides a new strategy and method for finding better electrode materials and improving the performance of Li-ion batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
端庄白开水完成签到,获得积分10
2秒前
吕春雨发布了新的文献求助10
2秒前
大个应助wxp_bioinfo采纳,获得10
3秒前
yqq完成签到 ,获得积分10
3秒前
4秒前
5秒前
芝士发布了新的文献求助10
5秒前
橘子发布了新的文献求助10
6秒前
6秒前
6秒前
晨曦发布了新的文献求助10
7秒前
7秒前
kobiy完成签到 ,获得积分10
7秒前
wu完成签到 ,获得积分10
8秒前
蛋泥完成签到,获得积分10
8秒前
顾矜应助mingjie采纳,获得10
9秒前
zhaowenxian发布了新的文献求助10
9秒前
勤劳傲晴发布了新的文献求助10
10秒前
10秒前
橘子完成签到,获得积分10
12秒前
可耐的从安完成签到 ,获得积分10
13秒前
zho应助背后的诺言采纳,获得10
13秒前
粥粥完成签到,获得积分10
13秒前
14秒前
打打应助陈杰采纳,获得10
15秒前
充电宝应助柔弱凡松采纳,获得10
16秒前
Jasmine发布了新的文献求助10
17秒前
18秒前
18秒前
大气的秋完成签到,获得积分10
19秒前
桐桐应助BB采纳,获得10
19秒前
19秒前
19秒前
曙光完成签到,获得积分10
20秒前
20秒前
大方嵩发布了新的文献求助10
21秒前
陌路发布了新的文献求助20
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794