Efficiency Boost of (Ag0.5,Cu0.5)(In1‐x,Gax)Se2 Thin Film Solar Cells by Using a Sequential Process: Effects of Ag‐Front Grading and Surface Phase Engineering

材料科学 钝化 带隙 开路电压 太阳能电池 光电子学 空位缺陷 分析化学(期刊) 纳米技术 电压 结晶学 电气工程 化学 工程类 图层(电子) 色谱法
作者
Lung‐Hsin Tu,Ngoc Thanh Thuy Tran,Shih‐kang Lin,Chih‐Huang Lai
出处
期刊:Advanced Energy Materials [Wiley]
卷期号:13 (29) 被引量:3
标识
DOI:10.1002/aenm.202301227
摘要

Abstract Post‐selenization‐fabricated (using elemental Se vapor) Cu(In,Ga)Se 2 solar cell efficiency is limited by a low open‐circuit voltage, which is attributable to the Ga‐deficient surface and insufficient grain growth. In this study, a band‐grading structure is demonstrated by combining Ag‐front and Ga‐back grading in selenized (Ag,Cu)(In,Ga)Se 2 (ACIGSe) absorbers with a properly designed precursor structure (Mo/CuGa/In/AgGa) and high Ag content ([Ag]/([Ag]+[Cu]) = 0.5). The phase evolution during post‐selenization reveals that the precursor structure suppresses Ag 2 Se formation and promotes the ACIGSe phase formed at a low temperature with enhanced grain growth. A widened surface bandgap by Ag‐front grading substantially increases the open‐circuit voltage. Furthermore, Ag addition promotes ordered vacancy compound (OVC) formation on the front surface to enlarge the valence band offset, which in turn reduces interface recombination. Furthermore, the OVC phase also assists interface passivation. Promoting surface OVC phase by Ag addition is also validated by first‐principles calculations. Furthermore, the K‐doped CuGa precursor is used for a ACIGSe absorber to address the significantly reduced carrier density by the Ag addition. With a band‐grading structure and surface OVC phase, the superior device achieves an efficiency of > 19%, the highest efficiency by post‐selenization with an elemental Se source.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雷城123发布了新的文献求助10
刚刚
辽沈最美女博完成签到,获得积分10
刚刚
刚刚
刚刚
刚刚
1秒前
djsj应助北望采纳,获得10
1秒前
完美世界应助白糖采纳,获得10
1秒前
orixero应助火日立采纳,获得10
1秒前
君君驳回了Ava应助
1秒前
缓慢觅山发布了新的文献求助10
1秒前
无花果应助Herro3采纳,获得10
1秒前
2秒前
舒适亦凝完成签到,获得积分10
2秒前
2秒前
Dave发布了新的文献求助10
3秒前
WonderHua应助朱朱采纳,获得10
3秒前
香蕉觅云应助朱朱采纳,获得10
3秒前
4秒前
CipherSage应助动听的笑南采纳,获得10
4秒前
司空发布了新的文献求助10
4秒前
木c完成签到,获得积分10
5秒前
深情安青应助bottle采纳,获得10
5秒前
NZH发布了新的文献求助10
5秒前
6秒前
7秒前
劲秉应助小木木壮采纳,获得10
7秒前
7秒前
。。。。发布了新的文献求助10
7秒前
赘婿应助过时的元风采纳,获得10
7秒前
1259671587发布了新的文献求助10
7秒前
暴躁的安阳关注了科研通微信公众号
7秒前
jiangmj1990发布了新的文献求助10
8秒前
劲秉应助lvbowen采纳,获得10
9秒前
脑洞疼应助顺利的雨灵采纳,获得10
10秒前
大山完成签到,获得积分10
10秒前
文献完成签到,获得积分20
10秒前
彭于晏应助啦啦啦~采纳,获得10
10秒前
玛利隆发布了新的文献求助30
11秒前
李健应助允怡采纳,获得10
11秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3481399
求助须知:如何正确求助?哪些是违规求助? 3071505
关于积分的说明 9122297
捐赠科研通 2763255
什么是DOI,文献DOI怎么找? 1516352
邀请新用户注册赠送积分活动 701541
科研通“疑难数据库(出版商)”最低求助积分说明 700339