材料科学
钝化
带隙
开路电压
太阳能电池
光电子学
空位缺陷
分析化学(期刊)
纳米技术
电压
结晶学
电气工程
色谱法
工程类
化学
图层(电子)
作者
Lung‐Hsin Tu,Ngoc Thanh Thuy Tran,Shih‐kang Lin,Chih‐Huang Lai
标识
DOI:10.1002/aenm.202301227
摘要
Abstract Post‐selenization‐fabricated (using elemental Se vapor) Cu(In,Ga)Se 2 solar cell efficiency is limited by a low open‐circuit voltage, which is attributable to the Ga‐deficient surface and insufficient grain growth. In this study, a band‐grading structure is demonstrated by combining Ag‐front and Ga‐back grading in selenized (Ag,Cu)(In,Ga)Se 2 (ACIGSe) absorbers with a properly designed precursor structure (Mo/CuGa/In/AgGa) and high Ag content ([Ag]/([Ag]+[Cu]) = 0.5). The phase evolution during post‐selenization reveals that the precursor structure suppresses Ag 2 Se formation and promotes the ACIGSe phase formed at a low temperature with enhanced grain growth. A widened surface bandgap by Ag‐front grading substantially increases the open‐circuit voltage. Furthermore, Ag addition promotes ordered vacancy compound (OVC) formation on the front surface to enlarge the valence band offset, which in turn reduces interface recombination. Furthermore, the OVC phase also assists interface passivation. Promoting surface OVC phase by Ag addition is also validated by first‐principles calculations. Furthermore, the K‐doped CuGa precursor is used for a ACIGSe absorber to address the significantly reduced carrier density by the Ag addition. With a band‐grading structure and surface OVC phase, the superior device achieves an efficiency of > 19%, the highest efficiency by post‐selenization with an elemental Se source.
科研通智能强力驱动
Strongly Powered by AbleSci AI