Development and validation of a risk score to predict unplanned hospital readmissions in ICU survivors: A data linkage study

医学 置信区间 布里氏评分 急诊医学 接收机工作特性 回顾性队列研究 重症监护室 优势比 介绍 逻辑回归 队列研究 重症监护医学 内科学 家庭医学 计算机科学 人工智能
作者
Julia Pilowsky,Amy Von Huben,Rosalind Elliott,Michael Roche
出处
期刊:Australian Critical Care [Elsevier BV]
标识
DOI:10.1016/j.aucc.2023.05.002
摘要

Intensive Care Unit (ICU) follow-up clinics are growing in popularity internationally; however, there is limited evidence as to which patients would benefit most from a referral to this service.The objective of this study was to develop and validate a model to predict which ICU survivors are most likely to experience an unplanned hospital readmission or death in the year after hospital discharge and derive a risk score capable of identifying high-risk patients who may benefit from referral to follow-up services.A multicentre, retrospective observational cohort study using linked administrative data from eight ICUs was conducted in the state of New South Wales, Australia. A logistic regression model was developed for the composite outcome of death or unplanned readmission in the 12 months after discharge from the index hospitalisation.12,862 ICU survivors were included in the study, of which 5940 (46.2%) patients experienced unplanned readmission or death. Strong predictors of readmission or death included the presence of a pre-existing mental health disorder (odds ratio [OR]: 1.52, 95% confidence interval [CI]: 1.40-1.65), severity of critical illness (OR: 1.57, 95% CI: 1.39-1.76), and two or more physical comorbidities (OR: 2.39, 95% CI: 2.14-2.68). The prediction model demonstrated reasonable discrimination (area under the receiver operating characteristic curve: 0.68, 95% CI: 0.67-0.69) and overall performance (scaled Brier score: 0.10). The risk score was capable of stratifying patients into three distinct risk groups-high (64.05% readmitted or died), medium (45.77% readmitted or died), and low (29.30% readmitted or died).Unplanned readmission or death is common amongst survivors of critical illness. The risk score presented here allows patients to be stratified by risk level, enabling targeted referral to preventative follow-up services.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
luqi完成签到,获得积分10
2秒前
王阿仔发布了新的文献求助10
2秒前
xixixiziwei发布了新的文献求助10
3秒前
3秒前
jason_dai完成签到,获得积分10
6秒前
lzx应助粗犷的灵松采纳,获得150
7秒前
SciGPT应助NMZN采纳,获得10
7秒前
xuda发布了新的文献求助10
8秒前
顾矜应助无限的谷丝采纳,获得10
8秒前
慕青应助苗条的芹采纳,获得10
8秒前
用户123完成签到,获得积分10
8秒前
9秒前
xixixiziwei完成签到,获得积分10
9秒前
俭朴新之完成签到 ,获得积分10
10秒前
榴芒兔应助依古比古采纳,获得10
10秒前
Lei完成签到,获得积分10
10秒前
11秒前
11秒前
12秒前
12秒前
在雨里思考完成签到,获得积分10
12秒前
小蘑菇应助xuda采纳,获得10
12秒前
winnerbing发布了新的文献求助10
12秒前
EpiphanyQ发布了新的文献求助10
13秒前
华仔应助丝丝采纳,获得10
13秒前
还没想好完成签到,获得积分10
13秒前
xiaoli完成签到,获得积分20
14秒前
温暖的鸿完成签到 ,获得积分10
14秒前
15秒前
外向菲鹰发布了新的文献求助10
15秒前
闪闪的夜阑完成签到,获得积分10
15秒前
Kingzd完成签到,获得积分10
16秒前
芋圆不圆发布了新的文献求助10
17秒前
17秒前
老实憨厚发布了新的文献求助10
17秒前
saisyo发布了新的文献求助10
18秒前
Kirito完成签到,获得积分0
18秒前
19秒前
研途顺利发布了新的文献求助10
19秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4011501
求助须知:如何正确求助?哪些是违规求助? 3551133
关于积分的说明 11307791
捐赠科研通 3285391
什么是DOI,文献DOI怎么找? 1811040
邀请新用户注册赠送积分活动 886767
科研通“疑难数据库(出版商)”最低求助积分说明 811636