Development and validation of a risk score to predict unplanned hospital readmissions in ICU survivors: A data linkage study

医学 置信区间 布里氏评分 急诊医学 接收机工作特性 回顾性队列研究 重症监护室 优势比 介绍 逻辑回归 队列研究 重症监护医学 内科学 家庭医学 人工智能 计算机科学
作者
Julia Pilowsky,Amy Von Huben,Rosalind Elliott,Michael Roche
出处
期刊:Australian Critical Care [Elsevier]
标识
DOI:10.1016/j.aucc.2023.05.002
摘要

Intensive Care Unit (ICU) follow-up clinics are growing in popularity internationally; however, there is limited evidence as to which patients would benefit most from a referral to this service.The objective of this study was to develop and validate a model to predict which ICU survivors are most likely to experience an unplanned hospital readmission or death in the year after hospital discharge and derive a risk score capable of identifying high-risk patients who may benefit from referral to follow-up services.A multicentre, retrospective observational cohort study using linked administrative data from eight ICUs was conducted in the state of New South Wales, Australia. A logistic regression model was developed for the composite outcome of death or unplanned readmission in the 12 months after discharge from the index hospitalisation.12,862 ICU survivors were included in the study, of which 5940 (46.2%) patients experienced unplanned readmission or death. Strong predictors of readmission or death included the presence of a pre-existing mental health disorder (odds ratio [OR]: 1.52, 95% confidence interval [CI]: 1.40-1.65), severity of critical illness (OR: 1.57, 95% CI: 1.39-1.76), and two or more physical comorbidities (OR: 2.39, 95% CI: 2.14-2.68). The prediction model demonstrated reasonable discrimination (area under the receiver operating characteristic curve: 0.68, 95% CI: 0.67-0.69) and overall performance (scaled Brier score: 0.10). The risk score was capable of stratifying patients into three distinct risk groups-high (64.05% readmitted or died), medium (45.77% readmitted or died), and low (29.30% readmitted or died).Unplanned readmission or death is common amongst survivors of critical illness. The risk score presented here allows patients to be stratified by risk level, enabling targeted referral to preventative follow-up services.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
美女完成签到,获得积分20
刚刚
2秒前
科研努力发布了新的文献求助10
3秒前
3秒前
qqqq_8发布了新的文献求助10
3秒前
失眠亦寒发布了新的文献求助10
4秒前
四海发布了新的文献求助10
6秒前
炸鸡发布了新的文献求助10
6秒前
黄豆完成签到,获得积分10
7秒前
7秒前
Jasper应助jj采纳,获得10
8秒前
驿路梨花完成签到,获得积分10
8秒前
8秒前
8秒前
粗暴的鱼发布了新的文献求助10
10秒前
太叔易云发布了新的文献求助10
10秒前
晓晓完成签到,获得积分10
11秒前
Tracy.完成签到,获得积分10
11秒前
11秒前
11秒前
nuliya发布了新的文献求助10
12秒前
zsy发布了新的文献求助10
14秒前
善良的樱完成签到 ,获得积分10
14秒前
淡淡尔烟发布了新的文献求助10
15秒前
量子星尘发布了新的文献求助10
15秒前
阿依咕噜完成签到,获得积分10
16秒前
NexusExplorer应助炸鸡采纳,获得10
16秒前
16秒前
YUYUYU发布了新的文献求助10
17秒前
JamesPei应助美女采纳,获得10
17秒前
jia完成签到 ,获得积分10
17秒前
传奇3应助小蚂蚁采纳,获得10
19秒前
温柔的秋柳完成签到,获得积分10
20秒前
20秒前
柏林寒冬应助wenqiliu采纳,获得10
22秒前
寒冷猫咪发布了新的文献求助20
22秒前
豌豆炸薯片完成签到,获得积分10
22秒前
CodeCraft应助太叔易云采纳,获得10
24秒前
赵海帆完成签到,获得积分10
24秒前
科研人完成签到,获得积分10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5594261
求助须知:如何正确求助?哪些是违规求助? 4679954
关于积分的说明 14812329
捐赠科研通 4646568
什么是DOI,文献DOI怎么找? 2534851
邀请新用户注册赠送积分活动 1502822
关于科研通互助平台的介绍 1469497