Machine learning interphase precipitation behavior of Ti micro-alloyed steel guided by physical metallurgy principle

相间 材料科学 降水 合金 冶金 遗传学 生物 物理 气象学
作者
Xin Li,Qiming Jiang,Xiaoguang Zhou,Siwei Wu,Guangming Cao,Zhenyu Liu
出处
期刊:Journal of materials research and technology [Elsevier BV]
卷期号:25: 2641-2653 被引量:1
标识
DOI:10.1016/j.jmrt.2023.06.077
摘要

Nano-sized interphase precipitates, which form in ordered rows, are critical for high strength low alloy (HSLA) steels, in achieving the desired strength needed for downgauging for light-weighting automotive structures. The occurrence of interphase precipitation depends on many interrelated parameters, such as alloy chemical composition, temperature, processing parameters and crystallography. In this paper, we use data analysis based on machine learning algorithm: decision tree to predict whether interphase precipitation can occur. Due to the high strength of interphase precipitation and the minimum alloy content is one of the important goals pursued of iron and steel enterprises. Therefore, under the condition that interphase precipitation occurs, the chemical composition of the alloy can be reduced by using interphase precipitation. Guided by the physical metallurgy principle, this paper transforms the processing parameters into physical metallurgy parameters such as grain size, stored deformation energy, ferrite phase transformation temperature, and decision tree (DT) algorithm was used to model and verify whether interphase precipitation can occur. Under the condition of interphase precipitation, the support vector machine (SVM) models of interphase precipitation characteristic values were established. Based on the DT model and the SVM model, the particle swarm optimization (PSO) algorithm was used for the reduction design of the alloy, and the chemical composition can be reduced according to the target strengthening strength. The results of alloy reduction have been verified by experiments, which shows that the alloy can be reduced by using interphase precipitation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助kiuikiu采纳,获得10
刚刚
刚刚
飞飞飞发布了新的文献求助20
1秒前
1秒前
2秒前
2秒前
科研狗发布了新的文献求助10
2秒前
wkjfh举报tracer求助涉嫌违规
2秒前
3秒前
3秒前
3秒前
3秒前
yanyanjun完成签到,获得积分20
4秒前
zhangnan完成签到,获得积分10
4秒前
科研通AI5应助向连虎采纳,获得10
4秒前
上官若男应助zz采纳,获得10
5秒前
5秒前
Daniel2010完成签到,获得积分10
5秒前
5秒前
南西完成签到,获得积分10
5秒前
6秒前
sgssm发布了新的文献求助10
6秒前
caojiarong发布了新的文献求助30
7秒前
Smile发布了新的文献求助10
7秒前
7秒前
8秒前
EasyNan给EasyNan的求助进行了留言
8秒前
1+1发布了新的文献求助10
9秒前
科研通AI5应助高贵的洋葱采纳,获得10
10秒前
Anpu关注了科研通微信公众号
10秒前
Derik发布了新的文献求助10
11秒前
在水一方应助123采纳,获得10
11秒前
kmmu0611完成签到 ,获得积分10
11秒前
机智绝悟完成签到,获得积分10
12秒前
李健应助zzzsss采纳,获得10
12秒前
12秒前
可可完成签到,获得积分10
12秒前
12秒前
桔梗完成签到,获得积分10
13秒前
14秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3735423
求助须知:如何正确求助?哪些是违规求助? 3279372
关于积分的说明 10014345
捐赠科研通 2996002
什么是DOI,文献DOI怎么找? 1643782
邀请新用户注册赠送积分活动 781471
科研通“疑难数据库(出版商)”最低求助积分说明 749400