A novel method of automatic peeling for Poria cocos based on image processing

灰度 像素 人工智能 图像处理 数学形态学 计算机视觉 二值图像 栏(排版) 阈值 计算机科学 数学 图像(数学) 几何学 连接(主束)
作者
Xiongchu Zhang,Bingqi Chen,Zhian Zheng,Wenjie Wang,Xin Fang,Congli Zhang
出处
期刊:International Journal of Agricultural and Biological Engineering [Chinese Society of Agricultural Engineering]
卷期号:16 (2): 267-274
标识
DOI:10.25165/j.ijabe.20231602.7044
摘要

Manual peeling of Poria cocos has low efficiency and large loss, and other peeling methods are not suitable for Poria cocos peeling. To solve this problem, this study designed and fabricated a set of automatic peeling equipment for Poria cocos, which combined image processing technology with the structure and function of the vertical milling machine. This paper mainly reports the image detection algorithm of Poria cocos epidermis position for automatic peeling. Firstly, the blue marks were glued to the movable and the immovable parts of clamping parts, and the initial window was determined through them. Then, the grayscale image within the initial window was obtained with the help of the chromatic aberration |2r-g-b| (red (r), green (g), blue (b) of pixels). The processing window was calculated with the aid of the distribution graph of the grayscale accumulation. Next, the grayscale image was taken into the process of the automatic binarization based on the Otsu method and the binary image was restored through dilation, erosion and denoising algorithm. Finally, pixel columns in the processing window were scanned column-by-column from the left to the right and the direction of each pixel column is from the bottom to the top. The first pixel with a value of 0 on each pixel column was set as the epidermis position of the current pixel column. The experiment results implied that, under the set light source, the average detection accuracy was 98.8%, and the average time to detect epidermis position once was 0.024 s. The detection accuracy and real-time performance of this algorithm meets the actual operation requirements of Poria cocos peeling. It lays the foundation for the automatic peeling operation of Poria cocos. Keywords: automatic peeling, image processing, Poria cocos, epidermis position DOI: 10.25165/j.ijabe.20231602.7044 Citation: Zhang X C, Chen B Q, Zheng Z A, Wang W J, Fang X, Zhang C L. A novel method of automatic peeling for poria cocos based on image processing. Int J Agric & Biol Eng, 2023; 16(2): 267-274.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
2秒前
2秒前
zp4完成签到,获得积分10
2秒前
三木完成签到 ,获得积分10
2秒前
式微发布了新的文献求助10
3秒前
3秒前
呼延坤完成签到 ,获得积分10
3秒前
yanxu关注了科研通微信公众号
3秒前
4秒前
科研通AI6应助qda采纳,获得10
4秒前
充电宝应助ll采纳,获得10
4秒前
芦蕊洁发布了新的文献求助10
4秒前
toxin37发布了新的文献求助10
5秒前
lumos发布了新的文献求助10
7秒前
小胡发布了新的文献求助30
7秒前
Llt关闭了Llt文献求助
7秒前
8秒前
Hoodie发布了新的文献求助10
8秒前
9秒前
Jasper应助范雅寒采纳,获得10
9秒前
Renee完成签到 ,获得积分10
11秒前
苏子关注了科研通微信公众号
11秒前
qwp发布了新的文献求助20
11秒前
优雅灵波完成签到,获得积分10
13秒前
小明月完成签到,获得积分10
13秒前
15秒前
量子星尘发布了新的文献求助50
15秒前
15秒前
16秒前
GRG完成签到 ,获得积分0
16秒前
上官若男应助猪头采纳,获得10
16秒前
赘婿应助JonyiCheng采纳,获得10
17秒前
凌爽完成签到 ,获得积分10
17秒前
18秒前
18秒前
雨辰完成签到 ,获得积分10
18秒前
18秒前
JC完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5082475
求助须知:如何正确求助?哪些是违规求助? 4299854
关于积分的说明 13397214
捐赠科研通 4123637
什么是DOI,文献DOI怎么找? 2258551
邀请新用户注册赠送积分活动 1262782
关于科研通互助平台的介绍 1196720