How to generate loyalty in mobile payment services? An integrative dual SEM-ANN analysis

忠诚 付款 独创性 营销 移动支付 业务 结构方程建模 认知 心理学 广告 社会心理学 计算机科学 财务 创造力 机器学习 神经科学
作者
Tri-Quan Dang,Garry Wei–Han Tan,Eugene Cheng‐Xi Aw,Keng‐Boon Ooi,Bhimaraya Metri,Yogesh K. Dwivedi
出处
期刊:International Journal of Bank Marketing [Emerald (MCB UP)]
卷期号:41 (6): 1177-1206 被引量:64
标识
DOI:10.1108/ijbm-05-2022-0202
摘要

Purpose The surging entrance of new mobile payment merchants into the growing market has prompted the need for an in-depth understanding of loyalty formation to retain customers. This study examines customers' loyalty generation process in mobile payment services by exploring the serial effect of cognitive drivers (i.e. brand awareness, perceived quality, brand image, perceived value and layout) on affective response, satisfaction and loyalty. Design/methodology/approach A survey using self-administered questionnaires was conducted. The data was collected from 370 consumers who have experience using mobile payment services in Vietnam. The data were submitted to partial least square structural equation modeling (PLS-SEM) and artificial neural networks (ANN) analysis. Findings The results indicated that all the proposed cognitive drivers show significant impacts on affective response, which, in turn, translates into satisfaction and loyalty. The post-hoc analysis revealed enjoyment as the vital affective response in determining satisfaction. Moreover, the multigroup analysis indicated that the relationship between affective response and satisfaction is stronger for the female group. In addition, the ANN's nonlinear result revealed complementary insight into the importance of cognitive drivers. Originality The current study revealed both linear and nonlinear mechanisms that explicate the roles of cognitive drivers and affective responses in fostering loyalty toward mobile payment merchants. The findings add to the existing literature that emphasizes consumers' initial mobile payment adoption.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
萌大发布了新的文献求助10
2秒前
科研通AI2S应助研友_LjDyNZ采纳,获得20
2秒前
量子星尘发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
3秒前
4秒前
Duckseid发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
6秒前
6秒前
Ava应助杨潇丶丶采纳,获得10
6秒前
6秒前
6秒前
抹茶发布了新的文献求助10
7秒前
fantasy完成签到,获得积分20
7秒前
ZYY完成签到,获得积分20
7秒前
7秒前
HWL完成签到,获得积分10
8秒前
桃子e发布了新的文献求助10
8秒前
wangli发布了新的文献求助10
8秒前
8秒前
8秒前
llj完成签到,获得积分10
8秒前
木木 12完成签到,获得积分10
8秒前
小半仙发布了新的文献求助10
9秒前
9秒前
9秒前
懒得理完成签到 ,获得积分10
9秒前
体贴半仙完成签到,获得积分20
9秒前
yu完成签到,获得积分10
10秒前
科研通AI6应助中微子采纳,获得10
10秒前
赘婿应助Quentin9998采纳,获得10
10秒前
酷波er应助dongjingbutaire采纳,获得10
10秒前
猪猪猪发布了新的文献求助10
10秒前
研友_8y2G0L发布了新的文献求助30
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667927
求助须知:如何正确求助?哪些是违规求助? 4888141
关于积分的说明 15122164
捐赠科研通 4826686
什么是DOI,文献DOI怎么找? 2584281
邀请新用户注册赠送积分活动 1538179
关于科研通互助平台的介绍 1496440