A multi-channel deep convolutional neural network for multi-classifying thyroid diseases

卷积神经网络 计算机科学 串联(数学) 人工智能 模式识别(心理学) 深度学习 二元分类 特征(语言学) 甲状腺疾病 甲状腺 频道(广播) 机器学习 医学 内科学 数学 组合数学 哲学 支持向量机 语言学 计算机网络
作者
Xinyu Zhang,Vincent C. S. Lee,Jia Rong,James C. Lee,Jiangning Song,Feng Liu
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:148: 105961-105961 被引量:12
标识
DOI:10.1016/j.compbiomed.2022.105961
摘要

Thyroid disease instances have been continuously increasing since the 1990s, and thyroid cancer has become the most rapidly rising disease among all the malignancies in recent years. Most existing studies focused on applying deep convolutional neural networks for detecting thyroid cancer. Despite their satisfactory performance on binary classification tasks, limited studies have explored multi-class classification of thyroid disease types; much less is known of the diagnosis of co-existence situation for different types of thyroid diseases.This study proposed a novel multi-channel convolutional neural network (CNN) architecture to address the multi-class classification task of thyroid disease. The multi-channel CNN merits from computed tomography characteristics to drive a comprehensive diagnostic decision for the overall thyroid gland, emphasizing the disease co-existence circumstance. Moreover, this study also examined alternative strategies to enhance the diagnostic accuracy of CNN models through concatenation of different scales of feature maps.Benchmarking experiments demonstrate the improved performance of the proposed multi-channel CNN architecture compared with the standard single-channel CNN architecture. More specifically, the multi-channel CNN achieved an accuracy of 0.909±0.048, precision of 0.944±0.062, recall of 0.896±0.047, specificity of 0.994±0.001, and F1 of 0.917±0.057, in contrast to the single-channel CNN, which obtained 0.902±0.004, 0.892±0.005, 0.909±0.002, 0.993±0.001, 0.898±0.003, respectively. In addition, the proposed model was evaluated in different gender groups; it reached a diagnostic accuracy of 0.908 for the female group and 0.901 for the male group.Collectively, the results highlight that the proposed multi-channel CNN has excellent generalization and has the potential to be deployed to provide computational decision support in clinical settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小迪应助执着的日记本采纳,获得20
刚刚
柇素完成签到,获得积分10
1秒前
kkmi发布了新的文献求助10
1秒前
1秒前
小蘑菇应助段锻采纳,获得10
1秒前
2秒前
5秒前
SciGPT应助哈娜桑de悦采纳,获得10
6秒前
XL发布了新的文献求助10
9秒前
sunnnn完成签到,获得积分10
9秒前
11秒前
苹果书文完成签到 ,获得积分10
12秒前
李健的粉丝团团长应助kkmi采纳,获得10
12秒前
12秒前
wangermazi完成签到,获得积分10
13秒前
13秒前
共享精神应助老木虫采纳,获得10
14秒前
666关闭了666文献求助
14秒前
推土机爱学习完成签到 ,获得积分10
15秒前
珍妮完成签到,获得积分10
16秒前
烟花应助崔昕雨采纳,获得10
16秒前
eeeating发布了新的文献求助50
17秒前
20秒前
21秒前
22秒前
荷属安完成签到,获得积分20
22秒前
火星上的夜梦完成签到 ,获得积分10
23秒前
23秒前
田様应助sketch采纳,获得10
23秒前
9sy完成签到,获得积分10
23秒前
羊沛蓝完成签到,获得积分10
23秒前
所所应助Bright24采纳,获得10
24秒前
充电宝应助糖糖采纳,获得10
24秒前
ANIVIA发布了新的文献求助10
26秒前
jxinxxx发布了新的文献求助30
26秒前
咖啡头发发布了新的文献求助10
27秒前
kingwill应助辰月贰拾采纳,获得20
27秒前
28秒前
29秒前
30秒前
高分求助中
中央政治學校研究部新政治月刊社出版之《新政治》(第二卷第四期) 1000
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
【港理工学位论文】Telling the tale of health crisis response on social media : an exploration of narrative plot and commenters' co-narration 500
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3433948
求助须知:如何正确求助?哪些是违规求助? 3031147
关于积分的说明 8941083
捐赠科研通 2719166
什么是DOI,文献DOI怎么找? 1491676
科研通“疑难数据库(出版商)”最低求助积分说明 689372
邀请新用户注册赠送积分活动 685523