Memristive Circuit Implementation of Operant Cascaded With Classical Conditioning

计算机科学 内容寻址存储器 冯·诺依曼建筑 遗忘 电子线路 记忆电阻器 联想学习 操作性条件作用 架空(工程) 内容寻址存储 实现(概率) 一般化 经典条件反射 人工智能 人工神经网络 电子工程 条件作用 电气工程 工程类 数学 心理学 神经科学 操作系统 数学分析 统计 结构工程 钢筋 认知心理学
作者
Chao Yang,Xiaoping Wang,Zhanfei Chen,Sen Zhang,Zhigang Zeng
出处
期刊:IEEE Transactions on Biomedical Circuits and Systems [Institute of Electrical and Electronics Engineers]
卷期号:16 (5): 926-938 被引量:17
标识
DOI:10.1109/tbcas.2022.3204742
摘要

Classical conditioning (CC) and operant conditioning (OC), also known as associative memory, are two of the most fundamental and critical learning mechanisms in the biological brain. However, the existing designs of associative memory memristive circuits mainly focus on CC, and few studies have used memristors to imitate OC at the behavioral level, as well as the OC-CC cascaded associative memories that are widespread in biological learning processes. This work proposes an OC-CC cascaded circuit composed of OC and CC circuits. With the OC memristive circuit, bio-like functions such as random exploration, feedback learning, experience memory, and experience-based decision-making are achieved, which enables the circuit to continuously reshape its own memories and actions to adapt to changing environments. By cascading it with the CC memristive circuit that has the functions of associative learning, forgetting, generalization, and differentiation, the OC-CC cascaded circuit implements richer associative memories and has stronger environmental adaptability. Finally, the proposed circuits can perform on-line in-situ learning and in-memory computing. This is a more brain-like processing method, which is different from the von Neumann architecture. The simulation results of the proposed circuits in PSPICE show that they can simulate the above functions and have advantages in power consumption and hardware overhead. This work provides a possible realization idea for large-scale bionic learning.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bkagyin应助DDDD源采纳,获得10
刚刚
研友_VZG7GZ应助lian采纳,获得10
刚刚
1秒前
2秒前
大模型应助老阳采纳,获得10
2秒前
DDDD源发布了新的文献求助10
3秒前
JoeyCory完成签到,获得积分10
3秒前
4秒前
阔达碧空发布了新的文献求助10
5秒前
saintly919完成签到,获得积分10
6秒前
lishihao发布了新的文献求助10
6秒前
6秒前
8秒前
9秒前
11秒前
12秒前
13秒前
从心应助松绿格采纳,获得10
13秒前
吕老黄发布了新的文献求助10
15秒前
scq发布了新的文献求助10
16秒前
CipherSage应助非8960采纳,获得20
16秒前
16秒前
jianghu关注了科研通微信公众号
16秒前
。。完成签到,获得积分10
16秒前
xiaolan发布了新的文献求助10
17秒前
安塘发布了新的文献求助30
17秒前
19秒前
21秒前
Akim应助lina采纳,获得10
22秒前
22秒前
Ava应助吕老黄采纳,获得10
24秒前
啊娴仔发布了新的文献求助10
24秒前
老阳发布了新的文献求助10
25秒前
26秒前
李健的小迷弟应助一一采纳,获得10
27秒前
早睡早起身体好完成签到 ,获得积分10
28秒前
jianghu发布了新的文献求助10
29秒前
jing216发布了新的文献求助10
32秒前
圆弧呱瓜完成签到,获得积分10
33秒前
SYLH应助azmj采纳,获得10
33秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
1.3μm GaAs基InAs量子点材料生长及器件应用 1000
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3526155
求助须知:如何正确求助?哪些是违规求助? 3106527
关于积分的说明 9280871
捐赠科研通 2804159
什么是DOI,文献DOI怎么找? 1539302
邀请新用户注册赠送积分活动 716522
科研通“疑难数据库(出版商)”最低求助积分说明 709495