氧气
分解
苯酚
催化作用
吸附
污染物
分子
臭氧
流出物
化学
动力学
化学工程
有机化学
环境工程
环境科学
物理
量子力学
工程类
作者
Guangyao Zhai,Shaozhi Liu,Shenghe Si,Yuanyuan Liu,Honggang Zhang,Yuyin Mao,Minghui Zhang,Zeyan Wang,Hefeng Cheng,Peng Wang,Zhaoke Zheng,Ying Dai,Baibiao Huang
出处
期刊:ACS ES&T water
[American Chemical Society]
日期:2022-09-06
卷期号:2 (10): 1725-1733
被引量:21
标识
DOI:10.1021/acsestwater.2c00226
摘要
Phenolic molecules are a kind of toxic organic pollutants commonly discharged from industrial effluents. Catalytic ozonation holds great potential in removing phenolic pollutants and further improving the removal efficiency is still the research focus of this field. In this study, defect engineering was used to construct Bi2O3 with rich oxygen vacancies (denoted as Ov-Bi2O3). Ov-Bi2O3 was found to exhibit efficient activity toward the removal of phenolic derivatives. Combined DFT calculations and experimental results suggest that oxygen vacancies play two important roles: (1) the exposed Bi sites induced by rich oxygen vacancies endow a special bridging O3 adsorption, which is beneficial to improve the kinetics of O3 decomposition; (2) O2 produced during the O3 decomposition process can be reutilized to generate 1O2, which prolongs the utilization efficiency of O3. In addition, Ov-Bi2O3 was loaded onto carbon fiber, which also demonstrates efficient activity. This work provides an alternative way to design efficient catalysts toward removal of phenolic pollutants via ozone oxidation.
科研通智能强力驱动
Strongly Powered by AbleSci AI