Non-invasive dual attention TCN for electromyography and motion data fusion in lower limb ambulation prediction

计算机科学 人工智能 肌电图 传感器融合 融合 模式识别(心理学) 帧(网络) 理论(学习稳定性) 运动(物理) 特征(语言学) 机器学习 物理医学与康复 医学 电信 语言学 哲学
作者
Bin Zhou,Naishi Feng,Hong Wang,Yanzheng Lu,Chunfeng Wei,Daqi Jiang,Ziyang Li
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:19 (4): 046051-046051 被引量:2
标识
DOI:10.1088/1741-2552/ac89b4
摘要

Objective.Recent technological advances show the feasibility of fusing surface electromyography (sEMG) signals and movement data to predict lower limb ambulation intentions. However, since the invasive fusion of different signals is a major impediment to improving predictive performance, searching for a non-invasive (NI) fusion mechanism for lower limb ambulation pattern recognition based on different modal features is crucial.Approach. We propose an end-to-end sequence prediction model with NI dual attention temporal convolutional networks (NIDA-TCNs) as a core to elegantly address the essential deficiencies of traditional decision models with heterogeneous signal fusion. Notably, the NIDA-TCN is a weighted fusion of sEMG and inertial measurement units with time-dependent effective hidden information in the temporal and channel dimensions using TCN and self-attentive mechanisms. The new model can better discriminate between walking, jumping, downstairs, and upstairs four lower limb activities of daily living.Main results. The results of this study show that the NIDA-TCN models produce predictions that significantly outperform both frame-wise and TCN models in terms of accuracy, sensitivity, precision, F1 score, and stability. Particularly, the NIDA-TCN with sequence decision fusion (NIDA-TCN-SDF) models, have maximum accuracy and stability increments of 3.37% and 4.95% relative to the frame-wise model, respectively, without manual feature-encoding and complex model parameters.Significance. It is concluded that the results demonstrate the validity and feasibility of the NIDA-TCN-SDF models to ensure the prediction of daily lower limb ambulation activities, paving the way to the development of fused heterogeneous signal decoding with better prediction performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
圆彰七大完成签到 ,获得积分10
刚刚
秋蚓完成签到 ,获得积分10
刚刚
Enko发布了新的文献求助200
刚刚
AIMS完成签到,获得积分0
1秒前
xinnng完成签到,获得积分10
1秒前
duchangzheng完成签到,获得积分10
1秒前
舒心的银耳汤完成签到,获得积分10
1秒前
SHYSHYLONG完成签到,获得积分10
2秒前
优雅的琳发布了新的文献求助10
2秒前
潇洒的冰烟完成签到,获得积分10
2秒前
大蜥蜴完成签到,获得积分10
3秒前
3秒前
smiles完成签到,获得积分10
3秒前
ZZ0901完成签到,获得积分10
4秒前
xinnng发布了新的文献求助10
4秒前
Zcy31098完成签到,获得积分20
4秒前
大将军发布了新的文献求助10
5秒前
不可以懒懒完成签到,获得积分10
5秒前
yangfeidong完成签到,获得积分10
5秒前
科研圣体完成签到 ,获得积分10
6秒前
一叶舟完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
gjj完成签到,获得积分20
7秒前
8秒前
田様应助huy采纳,获得10
8秒前
abner完成签到,获得积分10
8秒前
顾晓发布了新的文献求助10
9秒前
木冰衿完成签到,获得积分10
9秒前
优雅的琳完成签到,获得积分10
10秒前
10秒前
陌上疏完成签到,获得积分10
10秒前
zhichaoLI完成签到,获得积分10
10秒前
唐哈哈发布了新的文献求助10
10秒前
12秒前
科研小迷糊完成签到,获得积分20
13秒前
shaohua2011完成签到,获得积分10
13秒前
saily发布了新的文献求助10
14秒前
zhichaoLI发布了新的文献求助10
14秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Textbook of Interventional Radiology 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Impiego dell'associazione acetazolamide/pentossifillina nel trattamento dell'ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 730
錢鍾書楊絳親友書札 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3294825
求助须知:如何正确求助?哪些是违规求助? 2930755
关于积分的说明 8447840
捐赠科研通 2603057
什么是DOI,文献DOI怎么找? 1420887
科研通“疑难数据库(出版商)”最低求助积分说明 660702
邀请新用户注册赠送积分活动 643531