An improved transformer network for skin cancer classification

计算机科学 卷积神经网络 人工智能 变压器 皮肤癌 深度学习 模式识别(心理学) 编码 人工神经网络 机器学习 癌症 医学 基因 量子力学 物理 内科学 生物化学 电压 化学
作者
Chao Xin,Zhifang Liu,Ke Zhao,Linlin Miao,Yizhao Ma,Xiaoxia Zhu,Qiongyan Zhou,Songting Wang,Lingzhi Li,Feng Yang,Suling Xu,Haijiang Chen
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:149: 105939-105939 被引量:63
标识
DOI:10.1016/j.compbiomed.2022.105939
摘要

Use of artificial intelligence to identify dermoscopic images has brought major breakthroughs in recent years to the early diagnosis and early treatment of skin cancer, the incidence of which is increasing year by year worldwide and poses a great threat to human health. Achievements have been made in the research of skin cancer image classification by using the deep backbone of the convolutional neural network (CNN). This approach, however, only extracts the features of small objects in the image, and cannot locate the important parts.As a result, researchers of the paper turn to vision transformers (VIT) which has demonstrated powerful performance in traditional classification tasks. The self-attention is to improve the value of important features and suppress the features that cause noise. Specifically, an improved transformer network named SkinTrans is proposed.To verify its efficiency, a three step procedure is followed. Firstly, a VIT network is established to verify the effectiveness of SkinTrans in skin cancer classification. Then multi-scale and overlapping sliding windows are used to serialize the image and multi-scale patch embedding is carried out which pay more attention to multi-scale features. Finally, contrastive learning is used which makes the similar data of skin cancer encode similarly so that the encoding results of different data are as different as possible.The experiment is carried out based on two datasets, namely (1) HAM10000: a large dataset of multi-source dermatoscopic images of common skin cancers; (2)A clinical dataset of skin cancer collected by dermoscopy. The model proposed has achieved 94.3% accuracy on HAM10000 and 94.1% accuracy on our datasets, which verifies the efficiency of SkinTrans.The transformer network has not only achieved good results in natural language but also achieved ideal results in the field of vision, which also lays a good foundation for skin cancer classification based on multimodal data. This paper is convinced that it will be of interest to dermatologists, clinical researchers, computer scientists and researchers in other related fields, and provide greater convenience for patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无辜的朋友完成签到,获得积分10
刚刚
junqun发布了新的文献求助10
1秒前
1秒前
inCHident完成签到,获得积分10
2秒前
2秒前
yanguowusheng完成签到 ,获得积分10
2秒前
2秒前
3秒前
liuke完成签到,获得积分10
4秒前
共享精神应助12138采纳,获得30
4秒前
4秒前
4秒前
李健应助a成采纳,获得10
4秒前
粗暴的海豚完成签到,获得积分10
4秒前
tramp应助康凯采纳,获得10
5秒前
怕孤单的思雁完成签到,获得积分10
5秒前
6秒前
毛毛虫发布了新的文献求助10
6秒前
6秒前
青蛙呱呱发布了新的文献求助10
6秒前
7秒前
7秒前
大胆的书白完成签到,获得积分10
8秒前
有魅力荟给有魅力荟的求助进行了留言
8秒前
8秒前
嗯哼应助ylky采纳,获得20
8秒前
8秒前
8秒前
1223完成签到,获得积分10
8秒前
Ranch0完成签到,获得积分10
8秒前
9秒前
10秒前
Yey完成签到 ,获得积分10
10秒前
个性的语山完成签到,获得积分10
10秒前
11秒前
orixero应助大白采纳,获得10
11秒前
苹果飞绿完成签到,获得积分10
12秒前
拉布拉卡发布了新的文献求助10
13秒前
14秒前
鑫鑫努力学习完成签到,获得积分10
15秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159344
求助须知:如何正确求助?哪些是违规求助? 2810413
关于积分的说明 7887812
捐赠科研通 2469306
什么是DOI,文献DOI怎么找? 1314746
科研通“疑难数据库(出版商)”最低求助积分说明 630710
版权声明 602012