截骨术
增强现实
3d打印
计算机科学
三维模型
口腔正畸科
人工智能
生物医学工程
医学
作者
Frederico C. Martinho,Ina L. Griffin,Jeffery B. Price,Patricia A. Tordik
标识
DOI:10.1016/j.joen.2023.07.007
摘要
Introduction Augmented reality superimposes high-definition computer-generated virtual content onto the existing environment, providing users with an enhanced perception of reality. This study investigates the feasibility of integrating an augmented reality head-mounted device (AR) into a 3-dimensional dynamic navigation system (3D-DNS) for osteotomy and root-end resection (RER). It compares the accuracy and efficiency of AR + 3D-DNS to 3D-DNS for osteotomy and RER. Methods Seventy-two tooth roots of 3D-printed surgical jaw models were divided into two groups: AR + 3D-DNS (n=36) and 3D-DNS (n=36). Cone-beam computed tomography scans were taken pre-and post-operatively. The osteotomy and RER were virtually planned on X-guide software and delivered under 3D-DNS guidance. For the AR + 3D-DNS group, an AR head-mounted device (Microsoft HoloLens 2) was integrated into the 3D-DNS. The 2D- and 3D- deviations were calculated. The osteotomy and RER time and the number of procedural mishaps were recorded. Results Osteotomy and RER were completed in all samples (72/72). AR + 3D-DNS was more accurate than 3D-DNS, showing lower 2D- and 3D- deviation values (p<.05). The AR + 3D-DNS was more efficient in time than 3D-DNS (p<.05). There was no significant difference in the number of mishaps (p>.05). Conclusions Within the limitations of this in vitro study, the integration of an AR head-mounted device to 3D-DNS is feasible for osteotomy and RER. AR improved the accuracy and time efficiency of 3D-DNS in osteotomy and RER. Head-mounted AR has the potential to be safely and reliably integrated into 3D-DNS for endodontic microsurgery.
科研通智能强力驱动
Strongly Powered by AbleSci AI