Long-term mapping of land use and cover changes using Landsat images on the Google Earth Engine Cloud Platform in bay area - A case study of Hangzhou Bay, China

海湾 土地覆盖 环境科学 土地利用 海岸 自然地理学 遥感 地理 水文学(农业) 地质学 海洋学 土木工程 岩土工程 工程类
作者
Jintao Liang,Chao Chen,Yongze Song,Weiwei Sun,Gang Yang
出处
期刊:Sustainable horizons [Elsevier]
卷期号:7: 100061-100061 被引量:16
标识
DOI:10.1016/j.horiz.2023.100061
摘要

Large-scale, long-term series, and high-precision land use and cover change (LUCC) mapping is the basic support for territorial spatial planning and sustainable development in the Bay Area. In response to the sustainable development agenda, for characteristics of high landscape fragmentation, strong surface heterogeneity and frequent land use type conversion in the Bay Area, this study developed a random forest (RF) algorithm that considers spectral bands, remote sensing indices and components of a principal component analysis, and the mapping and monitoring of LUCC in Hangzhou Bay from 1985 to 2020 based on Google Earth Engine (GEE) and Digital Shoreline Analysis System (DSAS) were carried out. The results are as follows. (1) The overall accuracy (OA) and kappa coefficient were 92.83% and 0.91, respectively. (2) During the study period, the areas of the construction land, water area, and bare land increased, while the areas of the wood land, cultivated fields, and tidal flats decreased. (3) During the study period, the total area of the tidal flats decreased from 181.65 km2 to 161.50 km2, with an average annual decrease of 0.58 km2, and the tidal flats were primarily concentrated on the south shore of Hangzhou Bay. (4) During the study period, the transfer of cultivated fields to construction land was the most significant (2268.05 km2). (5) During the study period, the length of the coastline decreased from 383.73 km to 362.80 km, with an average annual decrease of 0.60 km. According to the DSAS statistics, the net shoreline movement (NSM) of the coastline on the north shore of Hangzhou Bay was 773.58 m, the end point rate (EPR) and the linear regression rate (LRR) were 22.10 m/a and 27.00 m/a, respectively. The NSM of the south shore was 4109.57 m, and the EPR and LRR were 117.42 m/a and 132.22 m/a, respectively. The proposed methods improve the accuracy of land use classification of the RF algorithm in the complex environment of the Bay Area, and it can provide technical support for natural resource survey and regional sustainable development in the Bay Area.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tuzi完成签到,获得积分10
1秒前
鲤鱼灵阳完成签到,获得积分10
2秒前
曼曼来完成签到,获得积分10
2秒前
Mr.Su完成签到 ,获得积分10
3秒前
yuncong323完成签到,获得积分10
4秒前
4秒前
月光族完成签到,获得积分10
5秒前
6秒前
deanna完成签到,获得积分10
6秒前
南国完成签到,获得积分10
6秒前
nature完成签到,获得积分10
7秒前
peekaboo完成签到,获得积分10
7秒前
zqlxueli完成签到 ,获得积分10
8秒前
阿郎二号完成签到 ,获得积分10
9秒前
吉以寒完成签到,获得积分10
9秒前
deanna发布了新的文献求助10
10秒前
烤鸭完成签到 ,获得积分10
11秒前
peekaboo发布了新的文献求助10
11秒前
乐观的从云完成签到,获得积分10
12秒前
liangguangyuan完成签到 ,获得积分10
15秒前
123完成签到,获得积分10
15秒前
Chloe完成签到 ,获得积分10
15秒前
迪迦奥特曼完成签到,获得积分10
15秒前
坚强香旋完成签到,获得积分10
17秒前
筱悠发布了新的文献求助10
17秒前
天天呼的海角完成签到,获得积分10
17秒前
hao发布了新的文献求助10
19秒前
李兴完成签到 ,获得积分10
21秒前
ri_290完成签到,获得积分10
21秒前
友好的牛排完成签到,获得积分10
22秒前
22秒前
慕青应助希特勒采纳,获得10
22秒前
球宝完成签到,获得积分10
22秒前
Yang22完成签到,获得积分10
23秒前
阿郎完成签到 ,获得积分10
23秒前
英姑应助科研通管家采纳,获得10
25秒前
传奇3应助科研通管家采纳,获得20
25秒前
脑洞疼应助科研通管家采纳,获得10
25秒前
Jan完成签到,获得积分10
25秒前
hao完成签到,获得积分10
26秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
叶剑英与华南分局档案史料 500
Foreign Policy of the French Second Empire: A Bibliography 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146969
求助须知:如何正确求助?哪些是违规求助? 2798221
关于积分的说明 7827159
捐赠科研通 2454808
什么是DOI,文献DOI怎么找? 1306480
科研通“疑难数据库(出版商)”最低求助积分说明 627788
版权声明 601565