Long-term mapping of land use and cover changes using Landsat images on the Google Earth Engine Cloud Platform in bay area - A case study of Hangzhou Bay, China

海湾 土地覆盖 环境科学 土地利用 海岸 自然地理学 遥感 地理 水文学(农业) 地质学 海洋学 土木工程 岩土工程 工程类
作者
Jintao Liang,Chao Chen,Yongze Song,Weiwei Sun,Gang Yang
出处
期刊:Sustainable horizons [Elsevier]
卷期号:7: 100061-100061 被引量:16
标识
DOI:10.1016/j.horiz.2023.100061
摘要

Large-scale, long-term series, and high-precision land use and cover change (LUCC) mapping is the basic support for territorial spatial planning and sustainable development in the Bay Area. In response to the sustainable development agenda, for characteristics of high landscape fragmentation, strong surface heterogeneity and frequent land use type conversion in the Bay Area, this study developed a random forest (RF) algorithm that considers spectral bands, remote sensing indices and components of a principal component analysis, and the mapping and monitoring of LUCC in Hangzhou Bay from 1985 to 2020 based on Google Earth Engine (GEE) and Digital Shoreline Analysis System (DSAS) were carried out. The results are as follows. (1) The overall accuracy (OA) and kappa coefficient were 92.83% and 0.91, respectively. (2) During the study period, the areas of the construction land, water area, and bare land increased, while the areas of the wood land, cultivated fields, and tidal flats decreased. (3) During the study period, the total area of the tidal flats decreased from 181.65 km2 to 161.50 km2, with an average annual decrease of 0.58 km2, and the tidal flats were primarily concentrated on the south shore of Hangzhou Bay. (4) During the study period, the transfer of cultivated fields to construction land was the most significant (2268.05 km2). (5) During the study period, the length of the coastline decreased from 383.73 km to 362.80 km, with an average annual decrease of 0.60 km. According to the DSAS statistics, the net shoreline movement (NSM) of the coastline on the north shore of Hangzhou Bay was 773.58 m, the end point rate (EPR) and the linear regression rate (LRR) were 22.10 m/a and 27.00 m/a, respectively. The NSM of the south shore was 4109.57 m, and the EPR and LRR were 117.42 m/a and 132.22 m/a, respectively. The proposed methods improve the accuracy of land use classification of the RF algorithm in the complex environment of the Bay Area, and it can provide technical support for natural resource survey and regional sustainable development in the Bay Area.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Riki完成签到,获得积分10
1秒前
虚幻白玉发布了新的文献求助10
1秒前
德行天下完成签到,获得积分10
1秒前
Jenny应助lan采纳,获得10
2秒前
fztnh完成签到,获得积分10
2秒前
上官若男应助lyz666采纳,获得10
2秒前
顾念完成签到 ,获得积分10
2秒前
277发布了新的文献求助10
3秒前
小二郎应助GCD采纳,获得10
4秒前
hhhhhh完成签到 ,获得积分10
4秒前
甜味拾荒者完成签到,获得积分10
6秒前
小二郎应助BONBON采纳,获得10
6秒前
7秒前
charllie完成签到 ,获得积分10
7秒前
空禅yew完成签到,获得积分10
8秒前
坚强亦丝应助跳跃采纳,获得10
10秒前
英俊的铭应助cc采纳,获得10
10秒前
huangsan完成签到,获得积分10
10秒前
匹诺曹完成签到,获得积分10
10秒前
11秒前
华仔应助进取拼搏采纳,获得10
11秒前
12秒前
dingdong发布了新的文献求助10
12秒前
you完成签到 ,获得积分10
13秒前
qwf完成签到 ,获得积分10
13秒前
14秒前
万能图书馆应助一一采纳,获得10
14秒前
执着跳跳糖完成签到 ,获得积分10
15秒前
阳yang完成签到,获得积分10
15秒前
牛头人完成签到,获得积分10
15秒前
16秒前
Rrr发布了新的文献求助10
16秒前
17秒前
17秒前
serenity完成签到 ,获得积分10
17秒前
Benliu完成签到,获得积分10
17秒前
csq发布了新的文献求助10
18秒前
19秒前
Hello应助外向的醉易采纳,获得10
19秒前
DWWWDAADAD完成签到,获得积分10
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808