电解质
电化学
阳极
材料科学
阴极
功率密度
化学工程
锂(药物)
碳酸盐
金属
盐(化学)
腐蚀
无机化学
化学
电极
冶金
有机化学
物理化学
医学
功率(物理)
物理
量子力学
工程类
内分泌学
作者
Yingchun Xia,Pan Zhou,Xian Kong,Jiekang Tian,Weili Zhang,Shuaishuai Yan,Wenhui Hou,Hang-Yu Zhou,Hao Dong,Xiaoxia Chen,Peican Wang,Ziang Xu,Lei Wan,Baoguo Wang,Kai Liu
出处
期刊:Nature Energy
[Springer Nature]
日期:2023-06-22
卷期号:8 (9): 934-945
被引量:105
标识
DOI:10.1038/s41560-023-01282-z
摘要
Conventional carbonate-based electrolytes with high corrosion towards Li metal result in massive dendrite growth and limited cycling life, particularly true for practical Li-metal batteries with high cathode loading (>3.5 mAh cm−2). Herein we design an asymmetric Li salt, lithium 1,1,1-trifluoro-N-[2-[2-(2-methoxyethoxy)ethoxy)]ethyl] methanesulfonamide (LiFEA) that possesses a pseudo-crown ether-like, folded molecular geometry. It enables carbonate electrolytes with a large apparent donor number and Li+ transference number and drives a self-cleaning mechanism for solid–electrolyte interphases, enhancing compatibility with Li-metal anodes even at high current densities. LiFEA-based carbonate electrolytes notably improved fast-cycling performances of Li | |NCM811 cells. Pouch cells of 310 Wh kg−1 achieved ~410 W kg−1 power density at the discharging current density of 6.59 mA cm−2. Under fast-cycling conditions (charging: 1.46 mA cm−2, discharging: 3.66 mA cm−2), pouch cells maintained 81% capacity after 100 cycles. Our work provides insights into the interplay between the molecular structure of Li salts, their physicochemical properties and electrochemical performances. An intensive effort in the development of Li-metal batteries is well underway. Here the authors design a Li salt with an asymmetric molecular structure that distinctly contrasts with conventional salts, enabling high-performance Li-metal batteries with carbonate electrolytes.
科研通智能强力驱动
Strongly Powered by AbleSci AI