Ti3C2 MXene-based aptasensor for sensitive and simultaneous detection of two diabetes biomarkers

适体 材料科学 荧光 费斯特共振能量转移 检出限 单层 猝灭(荧光) 糖尿病 生物物理学 纳米技术 生物 化学 分子生物学 色谱法 内分泌学 光学 物理
作者
Hongyuan Cui,Lin Yang,Xueqi Fu,Guodong Li,Shu Xing,Xiaofeng Wang
出处
期刊:Surfaces and Interfaces [Elsevier]
卷期号:41: 103196-103196 被引量:3
标识
DOI:10.1016/j.surfin.2023.103196
摘要

The simultaneous detection of multiple diabetes markers is important for the diagnosis and typing of diabetes because of the complex causes of diabetes. Two-dimensional titanium carbide (MXene), an emerging material, has great potential for biomedical sensing, in addition to its electrical applications. In this study, a fluorescence resonance energy transfer (FRET) aptasensor with high sensitivity and specificity was constructed using monolayer Ti3C2 MXene for the simultaneous detection of insulin and visceral adipose tissue-derived serotonin (vaspin). Fluorescein-labeled insulin binding aptamers (IBAs) and Cy7-labeled vaspin-binding aptamers (VBAs) were attached to Ti3C2, and their fluorescence was effectively quenched by FRET between the fluorescein and Ti3C2. Insulin and vaspin were preferentially bound to IBA and VBA for a higher affinity. This process led to the subsequent shedding of fluorescein from Ti3C2, resulting in fluorescence recovery. The high fluorescence quenching efficiency and broad wavelength absorption of Ti3C2 MXene enabled the quenching of two different, wide spectrum fluorescence at two different wavelengths, thus enabling the simultaneous detection of both insulin and vaspin. The aptasensor was highly sensitive, with a low detection limit of 36 pM for insulin and 45 pM for vaspin. Importantly, this Ti3C2-based aptasensor can precisely detect insulin and vaspin in human serum and diagnose a specific type of diabetes and identify its cause to facilitate subsequent treatment. The above results indicate that the Ti3C2-based aptasensor has promising applications in the clinical diagnosis and typing of diabetes mellitus.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助贪吃的猴子采纳,获得10
刚刚
刚刚
可爱的彩虹完成签到,获得积分10
刚刚
小确幸完成签到,获得积分10
刚刚
彭于晏应助毛毛虫采纳,获得10
1秒前
LilyChen完成签到 ,获得积分10
1秒前
Owen应助Su采纳,获得10
1秒前
1秒前
1秒前
2秒前
3秒前
yyyy关注了科研通微信公众号
3秒前
Jane完成签到 ,获得积分10
4秒前
4秒前
4秒前
kento发布了新的文献求助30
4秒前
Akim应助balzacsun采纳,获得10
5秒前
狼来了aas发布了新的文献求助10
5秒前
6秒前
didi完成签到,获得积分10
6秒前
嘻嘻发布了新的文献求助10
8秒前
冲冲冲完成签到 ,获得积分10
8秒前
8秒前
9秒前
9秒前
9秒前
9秒前
10秒前
10秒前
11秒前
11秒前
善良身影完成签到,获得积分10
11秒前
天天快乐应助郭豪琪采纳,获得10
12秒前
13679165979发布了新的文献求助10
14秒前
13679165979发布了新的文献求助10
14秒前
13679165979发布了新的文献求助10
14秒前
13679165979发布了新的文献求助10
14秒前
13679165979发布了新的文献求助10
14秒前
14秒前
Su发布了新的文献求助10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824