Dual Action of Lignin: Electrode and Electrolyte for Sustainable Supercapacitor Application

超级电容器 电解质 材料科学 碳化 化学工程 微型多孔材料 木质素 电化学 电极 化学 有机化学 复合材料 扫描电子显微镜 物理化学 工程类
作者
Mohmmad Khalid,Biswajit S. De,Aditya Singh,Sai Praneeth Thota,Samaneh Shahgaldi
出处
期刊:ACS applied energy materials [American Chemical Society]
卷期号:6 (15): 7857-7864 被引量:4
标识
DOI:10.1021/acsaem.3c00689
摘要

From a sustainability and economic point of view, lignin is a potential biopolymer that can be used as an electrode and electrolyte source for renewable energy applications. In this work, an electrode, i.e., microporous carbon, is prepared from the kraft lignin using a ball-milling method followed by vacuum-assisted carbonization. The milling time of kraft lignin has not only a significant effect on developing large surface area carbon (∼606 m2 g–1) without activation, but at the same time, vacuum-assisted carbonization also minimizes the oxygen content up to ∼1%. The microporous carbon (referred to as KL-8) developed from kraft lignin by optimizing milling time of 8 h in a symmetric supercapacitor displays a specific capacitance of 117.9 F g–1 at a current density of 0.5 A g–1 in lignin-containing 6 M KOH electrolyte (denoted as Lig/6 M KOH) compared to pure 6 M KOH solution (88 F g–1). The enhanced capacitance of a symmetric supercapacitor in Lig/6 M KOH electrolyte is attributed to the electronic carrier transported between the carbon electrode and electrolyte interface by virtue of oxygenated groups of lignin dissolved in the 6 M KOH electrolyte. The symmetric supercapacitor shows ultra-stable performance up to 75,000 repetitive charging–discharging cycles at 5 A g–1 with 98.2% capacitance retention. Furthermore, a lignin-derived gel electrolyte membrane is made and used in a solid-state supercapacitor, which exhibits improved electrochemical performance compared to the state-of-the-art polyvinyl alcohol/KOH-based gel electrolyte. Thus, the formulation of the active electrode and electrolyte from a sustainable source of lignin for supercapacitor applications represents a milestone in functionality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
沅6发布了新的文献求助10
刚刚
1秒前
1秒前
bkagyin应助wyxdsb采纳,获得10
1秒前
张爱学发布了新的文献求助10
1秒前
搜集达人应助风评采纳,获得10
2秒前
卡卡发布了新的文献求助10
2秒前
3秒前
mawanyu发布了新的文献求助10
3秒前
辉hui发布了新的文献求助10
3秒前
3秒前
科研通AI5应助老实松鼠采纳,获得10
3秒前
3秒前
wanci应助杨沉淀采纳,获得10
4秒前
闪闪的从彤完成签到 ,获得积分0
4秒前
V入门完成签到,获得积分10
4秒前
包包完成签到 ,获得积分10
4秒前
mimao2233完成签到,获得积分10
4秒前
椰椰发布了新的文献求助10
4秒前
吴青发布了新的文献求助200
5秒前
Hello应助魏猛采纳,获得10
5秒前
聪子发布了新的文献求助10
5秒前
momo完成签到,获得积分10
6秒前
Joyj99发布了新的文献求助10
6秒前
1111发布了新的文献求助10
6秒前
橘子发布了新的文献求助10
6秒前
勤奋鑫鹏发布了新的文献求助10
6秒前
7秒前
7秒前
7秒前
现代的战斗机完成签到,获得积分10
8秒前
mimao2233发布了新的文献求助10
8秒前
桐桐应助张爱学采纳,获得10
9秒前
领导范儿应助聪子采纳,获得10
9秒前
9秒前
七月流火应助一塔湖图采纳,获得50
10秒前
冷静访梦发布了新的文献求助10
10秒前
ZM完成签到,获得积分10
11秒前
huofuman完成签到,获得积分10
11秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3487798
求助须知:如何正确求助?哪些是违规求助? 3075697
关于积分的说明 9141664
捐赠科研通 2767951
什么是DOI,文献DOI怎么找? 1518837
邀请新用户注册赠送积分活动 703346
科研通“疑难数据库(出版商)”最低求助积分说明 701805