Glyphosate Separating and Sensing for Precision Agriculture and Environmental Protection in the Era of Smart Materials

计算机科学 环境科学 业务
作者
Jarosław Mazuryk,Katarzyna Klepacka,Włodzimierz Kutner,Piyush Sindhu Sharma
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:57 (27): 9898-9924 被引量:17
标识
DOI:10.1021/acs.est.3c01269
摘要

The present article critically and comprehensively reviews the most recent reports on smart sensors for determining glyphosate (GLP), an active agent of GLP-based herbicides (GBHs) traditionally used in agriculture over the past decades. Commercialized in 1974, GBHs have now reached 350 million hectares of crops in over 140 countries with an annual turnover of 11 billion USD worldwide. However, rolling exploitation of GLP and GBHs in the last decades has led to environmental pollution, animal intoxication, bacterial resistance, and sustained occupational exposure of the herbicide of farm and companies' workers. Intoxication with these herbicides dysregulates the microbiome-gut-brain axis, cholinergic neurotransmission, and endocrine system, causing paralytic ileus, hyperkalemia, oliguria, pulmonary edema, and cardiogenic shock. Precision agriculture, i.e., an (information technology)-enhanced approach to crop management, including a site-specific determination of agrochemicals, derives from the benefits of smart materials (SMs), data science, and nanosensors. Those typically feature fluorescent molecularly imprinted polymers or immunochemical aptamer artificial receptors integrated with electrochemical transducers. Fabricated as portable or wearable lab-on-chips, smartphones, and soft robotics and connected with SM-based devices that provide machine learning algorithms and online databases, they integrate, process, analyze, and interpret massive amounts of spatiotemporal data in a user-friendly and decision-making manner. Exploited for the ultrasensitive determination of toxins, including GLP, they will become practical tools in farmlands and point-of-care testing. Expectedly, smart sensors can be used for personalized diagnostics, real-time water, food, soil, and air quality monitoring, site-specific herbicide management, and crop control.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助聪明笑蓝采纳,获得10
1秒前
2秒前
2秒前
123完成签到 ,获得积分10
6秒前
6秒前
活力的青文完成签到,获得积分10
7秒前
连仁兄发布了新的文献求助10
8秒前
研友_VZG7GZ应助puny采纳,获得10
8秒前
8秒前
9秒前
13秒前
聪明笑蓝发布了新的文献求助10
14秒前
manman完成签到,获得积分10
16秒前
Uncanny完成签到,获得积分10
16秒前
monere应助AzA采纳,获得10
17秒前
先锋发布了新的文献求助10
18秒前
LX-ik完成签到,获得积分20
18秒前
19秒前
虚幻龙猫完成签到,获得积分10
19秒前
22秒前
23秒前
24秒前
25秒前
26秒前
26秒前
27秒前
27秒前
苏格拉底的嘲笑完成签到,获得积分10
28秒前
30秒前
qian完成签到 ,获得积分10
30秒前
31秒前
zycdx3906发布了新的文献求助10
32秒前
32秒前
萧水白应助泡泡采纳,获得10
36秒前
monere应助泡泡采纳,获得10
36秒前
39秒前
39秒前
40秒前
123456完成签到 ,获得积分10
40秒前
zxx发布了新的文献求助10
42秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3245737
求助须知:如何正确求助?哪些是违规求助? 2889446
关于积分的说明 8258249
捐赠科研通 2557757
什么是DOI,文献DOI怎么找? 1386555
科研通“疑难数据库(出版商)”最低求助积分说明 650327
邀请新用户注册赠送积分活动 626675