Reactive Company Control in Company Knowledge Graphs

计算机科学 背景(考古学) 导线 控制(管理) 图形 芯(光纤) 理论计算机科学 人工智能 电信 大地测量学 生物 古生物学 地理
作者
Davide Magnanimi,Luigi Bellomarini,Stefano Ceri,Davide Martinenghi
标识
DOI:10.1109/icde55515.2023.00256
摘要

The Company Control Problem consists in understanding who exerts decision power in companies. Central banks, financial intelligence units, and market regulators are all interested in this problem, which is crucial for their core goals. In the context where these actors operate, changes in company control call for immediate reactions.Yet, computing control relationships is a computationally expensive problem that involves traversing the entire shareholding structure and aggregating shares over multiple paths.In the context of the joint European banking supervision, the Bank of Italy will soon handle the shareholding graph of all European companies, which comprises hundreds of millions of entities (firms and individuals) and billions of edges and properties. This graph is highly volatile as the Bank continuously receives updates about shareholding relationships with unpredictable high frequency. This makes the straightforward bulk solution, where all the company control relationships are computed and materialized whenever a change occurs, unaffordable in practice.In this work, we present an incremental rule-based formalization of the problem, adopting the Vadalog fragment of the Datalog+/- families of languages. Our approach analyzes the specific change, singles out the portions of the graph that are affected by it, and selectively updates them. This allows one both to timely evaluate the impact of ownership variations on an extensive European-scale shareholding graph and to enable economists to perform the so-called "what-if analysis", i.e., simulation scenarios to proactively study the consequences of potential share acquisition operations, that currently are prohibitively time expensive. We provide an extensive experimental evaluation on very large company graphs, comparatively confirming the scalability of our technique in a real production setting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
靓丽的摩托关注了科研通微信公众号
刚刚
1秒前
22鱼完成签到,获得积分10
2秒前
aafrr完成签到 ,获得积分10
2秒前
芝士的酒完成签到,获得积分10
3秒前
3秒前
九城完成签到,获得积分10
3秒前
3秒前
5秒前
司徒文青应助Mid采纳,获得30
5秒前
华仔应助李秋静采纳,获得10
5秒前
buno应助大脸妹采纳,获得10
5秒前
Owen应助喵酱采纳,获得30
5秒前
胖豆发布了新的文献求助10
5秒前
今后应助科研小白菜采纳,获得10
6秒前
orixero应助欢呼的明雪采纳,获得10
6秒前
7秒前
my完成签到 ,获得积分10
8秒前
duxinyue完成签到,获得积分10
8秒前
8秒前
9秒前
科研通AI5应助斯文芷荷采纳,获得10
9秒前
10秒前
2鱼发布了新的文献求助10
11秒前
SYLH应助畅快的谷梦采纳,获得10
12秒前
mingjie发布了新的文献求助10
12秒前
Akim应助克里斯就是逊啦采纳,获得10
12秒前
越幸运完成签到 ,获得积分10
13秒前
young完成签到 ,获得积分10
13秒前
天天快乐应助成就的烧鹅采纳,获得10
14秒前
cora发布了新的文献求助10
14秒前
诚心的不斜完成签到,获得积分10
15秒前
bono完成签到 ,获得积分10
15秒前
15秒前
16秒前
又要起名字关注了科研通微信公众号
17秒前
可爱的函函应助su采纳,获得10
17秒前
18秒前
澳澳完成签到,获得积分10
19秒前
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794