亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

RGBD-SLAM Based on Object Detection With Two-Stream YOLOv4-MobileNetv3 in Autonomous Driving

计算机科学 人工智能 计算机视觉 点云 同时定位和映射 目标检测 卷积神经网络 对象(语法) 机器人 模式识别(心理学) 移动机器人
作者
Gongfa Li,Hanwen Fan,Guozhang Jiang,Du Jiang,Yuting Liu,Bo Tao,Juntong Yun
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:25 (3): 2847-2857 被引量:16
标识
DOI:10.1109/tits.2023.3284228
摘要

Autonomous driving has gradually become a research hotspot in recent years. Visual Simultaneous Localization and Mapping (SLAM) technology can help unmanned vehicles accurately explore the environment at a lower cost, and the readability of the map can be improved by integrating target detection algorithms. However, the location and 3D shape of the object in the map were not obtained. The method of RGBD-SLAM based on object detection with two-stream YOLOv4-MobileNetv3 convolutional neural network is proposed in this paper. RGBD SLAM algorithm and target detection algorithm are combined to build an algorithm model that can generate the global sparse map and build target dense map quickly. The two-stream network is integrated to obtain 2D information about the target, and further combined with the camera pose after the front-end key frame detection of the SLAM algorithm in this paper, and the dense 3D point cloud of the target and the center point position of the object is obtained. Then, the sparse point cloud of the SLAM system and the dense point cloud of the target can be obtained. The experimental results show that the number of point clouds decreases by about 50% and the time for mapping accounts for about 60% of the global dense mapping time. The method of this paper can efficiently decrease the computational space and improve the speed of semantic mapping, which verifies its feasibility and superiority. It can be used to achieve large-area mapping and the ability to update maps during autonomous driving.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蔡从安发布了新的文献求助10
13秒前
gy完成签到,获得积分10
16秒前
从容保温杯完成签到,获得积分10
18秒前
听曲散步完成签到,获得积分10
19秒前
21秒前
达达利亚发布了新的文献求助10
26秒前
达达利亚完成签到,获得积分10
32秒前
35秒前
ldzjiao完成签到 ,获得积分10
35秒前
体贴花卷发布了新的文献求助10
42秒前
47秒前
哈哈哈哈完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
zl完成签到,获得积分10
1分钟前
小边牧完成签到,获得积分10
1分钟前
李爱国应助zl采纳,获得10
1分钟前
彭于晏应助顺心含蕾采纳,获得10
1分钟前
科研通AI2S应助体贴花卷采纳,获得10
1分钟前
语嘘嘘发布了新的文献求助10
2分钟前
jeff完成签到,获得积分10
2分钟前
CUI应助伟航采纳,获得10
2分钟前
小张完成签到 ,获得积分10
2分钟前
Albert完成签到,获得积分10
2分钟前
清爽老九应助bryceeluo采纳,获得10
2分钟前
2分钟前
3分钟前
桓某人发布了新的文献求助10
3分钟前
呆萌念梦完成签到,获得积分20
3分钟前
3分钟前
phoenix完成签到 ,获得积分10
3分钟前
3分钟前
qmln4发布了新的文献求助10
3分钟前
3分钟前
qmln4完成签到,获得积分20
3分钟前
zhmnydb发布了新的文献求助10
3分钟前
3分钟前
3分钟前
3分钟前
在水一方应助幸福的小霜采纳,获得10
3分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3314391
求助须知:如何正确求助?哪些是违规求助? 2946633
关于积分的说明 8531143
捐赠科研通 2622373
什么是DOI,文献DOI怎么找? 1434483
科研通“疑难数据库(出版商)”最低求助积分说明 665329
邀请新用户注册赠送积分活动 650881