PR-PL: A Novel Prototypical Representation Based Pairwise Learning Framework for Emotion Recognition Using EEG Signals

人工智能 概化理论 计算机科学 成对比较 脑电图 判别式 特征学习 特征(语言学) 模式识别(心理学) 水准点(测量) 机器学习 编码 代表(政治) 语音识别 心理学 发展心理学 语言学 哲学 生物化学 化学 大地测量学 精神科 政治 政治学 法学 基因 地理
作者
Rushuang Zhou,Zhiguo Zhang,Hong Fu,Li Zhang,Linling Li,Gan Huang,Fali Li,Xin Yang,Yining Dong,Yuan‐Ting Zhang,Zhen Liang
出处
期刊:IEEE Transactions on Affective Computing [Institute of Electrical and Electronics Engineers]
卷期号:15 (2): 657-670 被引量:30
标识
DOI:10.1109/taffc.2023.3288118
摘要

Affective brain-computer interface based on electroencephalography (EEG) is an important branch in the field of affective computing. However, the individual differences in EEG emotional data and the noisy labeling problem in the subjective feedback seriously limit the effectiveness and generalizability of existing models. To tackle these two critical issues, we propose a novel transfer learning framework with Prototypical Representation based Pairwise Learning ( PR-PL ). The discriminative and generalized EEG features are learned for emotion revealing across individuals and the emotion recognition task is formulated as pairwise learning for improving the model tolerance to the noisy labels. More specifically, a prototypical learning is developed to encode the inherent emotion-related semantic structure of EEG data and align the individuals' EEG features to a shared common feature space under consideration of the feature separability of both source and target domains. Based on the aligned feature representations, pairwise learning with an adaptive pseudo labeling method is introduced to encode the proximity relationships among samples and alleviate the label noises effect on modeling. Extensive results on two benchmark databases (SEED and SEED-IV) under four different cross-validation evaluation protocols validate the model reliability and stability across subjects and sessions. Compared to the literature, the average enhancement of emotion recognition across four different evaluation protocols is 2.04% (SEED) and 2.58% (SEED-IV). The source code is available at https://github.com/KAZABANA/PR-PL .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
haofan17完成签到,获得积分0
刚刚
YY发布了新的文献求助30
刚刚
Shaynin完成签到,获得积分10
1秒前
充电宝应助fanli采纳,获得10
1秒前
XXXX完成签到,获得积分10
2秒前
发顶刊完成签到,获得积分10
2秒前
小二郎应助少年弦采纳,获得10
2秒前
weiyu发布了新的文献求助10
3秒前
wangbq完成签到 ,获得积分10
3秒前
4秒前
Swim完成签到,获得积分20
5秒前
丘比特应助邵晓啸采纳,获得20
7秒前
科研通AI2S应助发顶刊采纳,获得10
8秒前
丘比特应助科研通管家采纳,获得10
8秒前
好运来应助科研通管家采纳,获得10
8秒前
爆米花应助科研通管家采纳,获得10
8秒前
彭于晏应助科研通管家采纳,获得10
8秒前
传奇3应助科研通管家采纳,获得10
8秒前
星辰大海应助科研通管家采纳,获得10
8秒前
大模型应助科研通管家采纳,获得10
8秒前
ding应助科研通管家采纳,获得10
8秒前
知许解夏应助科研通管家采纳,获得10
9秒前
充电宝应助科研通管家采纳,获得10
9秒前
天天快乐应助科研通管家采纳,获得10
9秒前
乐乐应助科研通管家采纳,获得10
9秒前
香蕉觅云应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
搜集达人应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
李爱国应助科研通管家采纳,获得30
9秒前
CodeCraft应助科研通管家采纳,获得10
9秒前
慕青应助科研通管家采纳,获得10
9秒前
9秒前
lee发布了新的文献求助10
10秒前
leodu完成签到,获得积分10
12秒前
12秒前
13秒前
学术大白完成签到,获得积分10
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966370
求助须知:如何正确求助?哪些是违规求助? 3511789
关于积分的说明 11159900
捐赠科研通 3246400
什么是DOI,文献DOI怎么找? 1793416
邀请新用户注册赠送积分活动 874427
科研通“疑难数据库(出版商)”最低求助积分说明 804388