PR-PL: A Novel Prototypical Representation Based Pairwise Learning Framework for Emotion Recognition Using EEG Signals

人工智能 概化理论 计算机科学 成对比较 脑电图 判别式 特征学习 特征(语言学) 模式识别(心理学) 水准点(测量) 机器学习 编码 代表(政治) 语音识别 心理学 发展心理学 语言学 哲学 生物化学 化学 大地测量学 精神科 政治 政治学 法学 基因 地理
作者
Rushuang Zhou,Zhiguo Zhang,Hong Fu,Li Zhang,Linling Li,Gan Huang,Fali Li,Xin Yang,Yining Dong,Yuan‐Ting Zhang,Zhen Liang
出处
期刊:IEEE Transactions on Affective Computing [Institute of Electrical and Electronics Engineers]
卷期号:15 (2): 657-670 被引量:42
标识
DOI:10.1109/taffc.2023.3288118
摘要

Affective brain-computer interface based on electroencephalography (EEG) is an important branch in the field of affective computing. However, the individual differences in EEG emotional data and the noisy labeling problem in the subjective feedback seriously limit the effectiveness and generalizability of existing models. To tackle these two critical issues, we propose a novel transfer learning framework with Prototypical Representation based Pairwise Learning ( PR-PL ). The discriminative and generalized EEG features are learned for emotion revealing across individuals and the emotion recognition task is formulated as pairwise learning for improving the model tolerance to the noisy labels. More specifically, a prototypical learning is developed to encode the inherent emotion-related semantic structure of EEG data and align the individuals' EEG features to a shared common feature space under consideration of the feature separability of both source and target domains. Based on the aligned feature representations, pairwise learning with an adaptive pseudo labeling method is introduced to encode the proximity relationships among samples and alleviate the label noises effect on modeling. Extensive results on two benchmark databases (SEED and SEED-IV) under four different cross-validation evaluation protocols validate the model reliability and stability across subjects and sessions. Compared to the literature, the average enhancement of emotion recognition across four different evaluation protocols is 2.04% (SEED) and 2.58% (SEED-IV). The source code is available at https://github.com/KAZABANA/PR-PL .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
3秒前
卜雪旋完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
6秒前
浮游应助舒心的雪莲采纳,获得10
6秒前
7秒前
7秒前
传奇3应助你好采纳,获得10
8秒前
李小心完成签到,获得积分10
8秒前
8秒前
8秒前
火山蜗牛发布了新的文献求助10
8秒前
xiao茗发布了新的文献求助10
9秒前
changmxiao发布了新的文献求助10
11秒前
12秒前
啦啦啦发布了新的文献求助10
14秒前
julien完成签到,获得积分10
14秒前
15秒前
18秒前
wyw发布了新的文献求助10
19秒前
坦率芷天完成签到,获得积分10
19秒前
端庄的天空关注了科研通微信公众号
20秒前
飞天猫发布了新的文献求助10
21秒前
温暖的问候完成签到,获得积分10
21秒前
22秒前
22秒前
顾矜应助Irelia采纳,获得50
23秒前
24秒前
x00114514完成签到,获得积分10
24秒前
科研通AI6应助xiao茗采纳,获得10
25秒前
可爱的函函应助wyw采纳,获得10
25秒前
25秒前
changmxiao完成签到,获得积分10
26秒前
28秒前
15656869999发布了新的文献求助10
28秒前
28秒前
我思故我在完成签到,获得积分10
29秒前
小二郎应助会幸福的采纳,获得10
30秒前
30秒前
是阿刁完成签到,获得积分10
32秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5457360
求助须知:如何正确求助?哪些是违规求助? 4563864
关于积分的说明 14291813
捐赠科研通 4488514
什么是DOI,文献DOI怎么找? 2458558
邀请新用户注册赠送积分活动 1448595
关于科研通互助平台的介绍 1424229