MLP-Like Model With Convolution Complex Transformation for Auxiliary Diagnosis Through Medical Images

计算机科学 人工智能 卷积神经网络 模式识别(心理学) 卷积(计算机科学) 深度学习 一般化 特征提取 上下文图像分类 转化(遗传学) 计算机视觉 人工神经网络 图像(数学) 数学 数学分析 基因 化学 生物化学
作者
Mengjian Zhang,Guihua Wen,Jiahui Zhong,Dongliang Chen,Changjun Wang,Xuhui Huang,Shijun Zhang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (9): 4385-4396 被引量:14
标识
DOI:10.1109/jbhi.2023.3292312
摘要

Medical images such as facial and tongue images have been widely used for intelligence-assisted diagnosis, which can be regarded as the multi-label classification task for disease location (DL) and disease nature (DN) of biomedical images. Compared with complicated convolutional neural networks and Transformers for this task, recent MLP-like architectures are not only simple and less computationally expensive, but also have stronger generalization capabilities. However, MLP-like models require better input features from the image. Thus, this study proposes a novel convolution complex transformation MLP-like (CCT-MLP) model for the multi-label DL and DN recognition task for facial and tongue images. Notably, the convolutional Tokenizer and multiple convolutional layers are first used to extract the better shallow features from input biomedical images to make up for the loss of spatial information obtained by the simple MLP structure. Subsequently, the Channel-MLP architecture with complex transformations is used to extract deep-level contextual features. In this way, multi-channel features are extracted and mixed to perform the multi-label classification of the input biomedical images. Experimental results on our constructed multi-label facial and tongue image datasets demonstrate that our method outperforms existing methods in terms of both accuracy (Acc) and mean average precision (mAP).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
xian林完成签到,获得积分10
刚刚
whatever举报求助违规成功
刚刚
千跃举报求助违规成功
刚刚
刚刚
刚刚
Ashao完成签到,获得积分10
1秒前
钱从四面八方来完成签到 ,获得积分10
2秒前
不洒完成签到,获得积分10
2秒前
SciGPT应助fionazhangdr采纳,获得10
2秒前
2秒前
化合物来完成签到,获得积分10
3秒前
dadada发布了新的文献求助10
3秒前
3秒前
5秒前
杀出个黎明举报求助违规成功
5秒前
whatever举报求助违规成功
5秒前
1111举报求助违规成功
5秒前
5秒前
xuan发布了新的文献求助20
5秒前
5秒前
stt完成签到 ,获得积分10
6秒前
lpf关闭了lpf文献求助
6秒前
章鱼哥发布了新的文献求助10
7秒前
圣迭戈完成签到,获得积分20
7秒前
betterme完成签到,获得积分10
7秒前
飞云发布了新的文献求助10
8秒前
大个应助暴龙兽采纳,获得10
8秒前
开放的扬发布了新的文献求助30
9秒前
夏目发布了新的文献求助10
9秒前
心灵美的石头完成签到,获得积分10
9秒前
细腻的宫二完成签到,获得积分10
10秒前
bkagyin应助胖豆采纳,获得10
10秒前
11秒前
十三完成签到 ,获得积分10
12秒前
tomorrow完成签到,获得积分10
12秒前
12秒前
无痕完成签到,获得积分10
13秒前
千云皆墨完成签到,获得积分10
13秒前
华仔应助初九采纳,获得10
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953748
求助须知:如何正确求助?哪些是违规求助? 3499604
关于积分的说明 11096363
捐赠科研通 3230143
什么是DOI,文献DOI怎么找? 1785894
邀请新用户注册赠送积分活动 869656
科研通“疑难数据库(出版商)”最低求助积分说明 801498