Predictive ecological niche modelling of an important bio-control agent: Trichoderma harzianum (Rifai) using the MaxEnt machine learning tools with climatic and non-climatic predictors

栖息地 生态位 生态学 环境科学 利基 环境生态位模型 生物
作者
Manish Mathur,Preet Mathur
出处
期刊:Biocontrol Science and Technology [Informa]
卷期号:33 (9): 820-854 被引量:1
标识
DOI:10.1080/09583157.2023.2245985
摘要

ABSTRACTEcological niche model (ENM) pertains to a class of methodologies that utilise occurrence data alongside environmental data to formulate a correlative model of the environmental circumstances that satisfy a species' ecological requirements. In the current study, ENM was employed to ascertain the types of habitat for Trichoderma harzianum using machine learning algorithm known as MaxEnt Entropy. Our line of reasoning posits that the efficacy of T. harzianum as a bio-control agent can be enhanced, alongside the advancement of host/crop development and metabolic processes, through its deliberate introduction into geographically appropriate habitats. ENM was performed on 92 spatially thinned presence points of this species across India, considering three bio-climatic time periods (present, 2050, and 2070) and four greenhouse gas scenarios (known as representative concentration pathways RCPs). Non-bioclimatic factors include ecosystem rooting depths (ERD), total plant available water storage capacity (TPAWSC), habitat heterogeneity indices (HHI), land use land cover (LULC) and to soil variables at four depths. Energy-related factors, like Isothermality and minimum temperature of coldest month, were shown to be the most essential for the habitat appropriateness of this species during the current bio-climatic period. Future climate predictions and their associated RCPs revealed that water-related variables, like precipitation of wettest quarter, were the most influential. Non-climatic elements that were shown to have significant impact included soil pH, maximum diversity indices, forest and grassland types, TPAWSC, ERD (95%). Our analysis showed that this species will always find optimal suitability sites in northern eastern India with almost all predictors except root zone variables.KEYWORDS: Ecological niche modellingbio-controlTrichoderma harzianumfundamental nicheland use land coverecosystem rooting depthsMaxEnt model AcknowledgementsSenior author thankful to the Director, ICAR-CAZRI for giving approval to him for attending training on R-Programming that enhance his working capacity using ENM modelling techniques. Miss Preet Mathur (Jodhpur Institute of Engineering and Technology, Jodhpur, India) thankful to their Director for extending their academic help. Senior author conceptualised the chapter theme and interpretation of output of various machine learning techniques. Co-Author prepared various types of language codes in python, Java and in R scripts and convert the various file format from ASCII to KMZ, Raster, dbf, CSV etc. for software's like QGIS 3.10.0; Wallace; DIVA-GIS version 7.5; MaxEnt 3.4.1 software; SDM toolbox; Map Comparison Kit; ENMTools and Ntbox; SSDM R packages.Disclosure statementNo potential conflict of interest was reported by the author(s).Data availability statementThe data that support the findings of this study specifically geo-coordinates of the species are available on request from the corresponding author, [Manish Mathur]. The data are not publicly available due to avoid the duplication of the work within the same geographical area

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
蓝天应助awaer采纳,获得10
1秒前
蓝天应助东方傲儿采纳,获得10
1秒前
灵巧冰露发布了新的文献求助10
1秒前
852应助明理念桃采纳,获得10
1秒前
1秒前
1秒前
2秒前
蓝天应助生命化育采纳,获得10
2秒前
2秒前
青山见我发布了新的文献求助10
2秒前
cfv发布了新的文献求助10
2秒前
大气映冬完成签到,获得积分10
3秒前
3秒前
Criminology34应助无zzz的人采纳,获得10
3秒前
烟花应助yz采纳,获得10
4秒前
4秒前
通通通发布了新的文献求助30
4秒前
4秒前
5秒前
贾哲宇完成签到,获得积分10
5秒前
5秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
小猪找库里完成签到,获得积分10
6秒前
月月月鸟伟完成签到,获得积分10
6秒前
慕青应助kkeeaa采纳,获得10
6秒前
7秒前
zsqqqqq发布了新的文献求助10
7秒前
个性的紫菜应助上善若水采纳,获得10
7秒前
Ashore发布了新的文献求助10
7秒前
7秒前
俊逸的念桃完成签到,获得积分10
7秒前
8秒前
8秒前
8秒前
8秒前
xinglihai发布了新的文献求助10
8秒前
完美世界应助坚强的严青采纳,获得10
8秒前
量子星尘发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784558
求助须知:如何正确求助?哪些是违规求助? 5682922
关于积分的说明 15464566
捐赠科研通 4913664
什么是DOI,文献DOI怎么找? 2644848
邀请新用户注册赠送积分活动 1592770
关于科研通互助平台的介绍 1547187